
www.manaraa.com

Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2020

Sensor Fusion and Non-linear MPC controller development Sensor Fusion and Non-linear MPC controller development

studies for Intelligent Autonomous vehicular systems studies for Intelligent Autonomous vehicular systems

Ahammad Basha Dudekula
Michigan Technological University, adudekul@mtu.edu

Copyright 2020 Ahammad Basha Dudekula

Recommended Citation Recommended Citation
Dudekula, Ahammad Basha, "Sensor Fusion and Non-linear MPC controller development studies for
Intelligent Autonomous vehicular systems", Open Access Dissertation, Michigan Technological University,
2020.
https://doi.org/10.37099/mtu.dc.etdr/998

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Controls and Control Theory Commons, Electrical and Electronics Commons, Electro-Mechanical
Systems Commons, Military Vehicles Commons, Navigation, Guidance, Control, and Dynamics Commons, and the
VLSI and Circuits, Embedded and Hardware Systems Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/998
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F998&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=digitalcommons.mtu.edu%2Fetdr%2F998&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.mtu.edu%2Fetdr%2F998&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/298?utm_source=digitalcommons.mtu.edu%2Fetdr%2F998&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/298?utm_source=digitalcommons.mtu.edu%2Fetdr%2F998&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1408?utm_source=digitalcommons.mtu.edu%2Fetdr%2F998&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1409?utm_source=digitalcommons.mtu.edu%2Fetdr%2F998&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=digitalcommons.mtu.edu%2Fetdr%2F998&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

SENSOR FUSION AND NON-LINEAR MPC CONTROLLER DEVELOPMENT
STUDIES FOR INTELLIGENT AUTONOMOUS VEHICULAR SYSTEMS

By
Ahammad Basha Dudekula

A DISSERTATION
Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
In Mechanical Engineering-Engineering Mechanics

MICHIGAN TECHNOLOGICAL UNIVERSITY
2020

© 2020 Ahammad Basha Dudekula

www.manaraa.com

www.manaraa.com

This dissertation has been approved in partial fulfillment of the requirements for
the Degree of DOCTOR OF PHILOSOPHY in Mechanical Engineering-Engineering
Mechanics.

Department of Mechanical Engineering-Engineering Mechanics

Dissertation Advisor: Dr. Jeffrey D. Naber

Committee Member: Dr. Bo Chen

Committee Member: Dr. Jeremy Worm

Committee Member: Dr. Stephen A. Hackney

Department Chair: Dr. William W. Predebon

www.manaraa.com

www.manaraa.com

Dedication

To my Parents, Wife, Guide and Brother

who have provided continuous support and without which this work would have not
been achieved today.

www.manaraa.com

www.manaraa.com

Contents

List of Figures . xi

List of Tables . xv

Preface . xvii

Acknowledgments . xix

Definitions . xxi

List of Abbreviations . xxiii

Abstract . xxv

1 Introduction . 1
1.1 Background and Motivation . 1

1.1.1 Critical Areas in Autonomous Vehicle Development 1
1.1.2 Putting pieces together . 3

1.2 Goals and Objectives . 4
1.3 Organization of work . 4

2 Sensor Fusion studies for vehicle yaw estimation 7
2.1 Methodology . 10

2.1.1 Conventional EKF algorithm 10
2.1.2 System propagation Model 11
2.1.3 System Measurement model 12

2.1.3.1 Accelerometer model 12
2.1.3.2 Magnetometer model 13

2.2 Adaptive EKF Filter . 14
2.2.1 Prediction step . 14
2.2.2 Update step . 15
2.2.3 Modified/Kinematics-fusion EKF 15

2.3 Experimental setup . 19
2.3.1 Accelerometer calibration 19
2.3.2 Vehicle kinematics validation 20

vii

www.manaraa.com

2.4 Results and Discussion . 21
2.4.1 Static tests . 22

2.4.1.1 Criteria to apply Kinematic fusion algorithm . . . 23
2.4.1.2 Recalibration studies 25

2.4.2 On-Road Tests . 27
2.4.2.1 Test conditions . 27

2.4.3 Studies on Straight line tests 29
2.4.4 90 Deg turn road path analysis 31
2.4.5 Round-about turn test path Analysis 33
2.4.6 Circle tests . 35

2.4.6.1 Error Analysis . 37

3 Non linear MPC algorithm development for unstructured envi-
ronment with moving and stationary obstacle avoidance 39
3.1 Introduction . 39

3.1.1 Organization of work . 43
3.2 Methodology for stationary obstacles 44

3.2.1 Part-1: Overview of MPC algorithm 45
3.2.1.1 MPC algorithm Structure 45
3.2.1.2 Vehicle plant model 45
3.2.1.3 Algorithm objective 46
3.2.1.4 Algorithm inputs and outputs 46

3.2.2 Part-2: ABD-JDN algorithm 47
3.2.2.1 LIDAR View definition 47
3.2.2.2 Obstacle detection logic 48
3.2.2.3 LIDAR data storage process 49
3.2.2.4 ABD-JDN Algorithm: for stationary obstacle avoid-

ance process . 50
3.2.2.5 ABD-JDN algorithm: for combined obstacle and

road-grade avoidance process 51
3.2.3 Part-3: Optimal control problem formulation using MPC for

Stationary Obstacle avoidance 56
3.2.3.1 Equation (3.2): Dynamic model constraint 56
3.2.3.2 Equations (3.3), (3.4):State and control constraints 59
3.2.3.3 Equation (3.5):vehicle dynamical safety constraint . 60
3.2.3.4 Equation (3.6):Stationary obstacle avoidance con-

straint . 61
3.2.3.5 Equation (3.7):Prediction horizon constraint 62
3.2.3.6 Equation (3.8):Stop constraint 62
3.2.3.7 Cost function . 63

3.3 Methodology for moving obstacles 65
3.3.1 Part-1: Detection process 65

viii

www.manaraa.com

3.3.2 Part-2: State identification process 66
3.3.2.1 Moving Obstacle state handling process 69

3.3.3 Part-3: Optimal control Problem formulation for moving ob-
stacles . 70

3.4 N-MPC problem formulation using Casadi tool 72
3.5 Results and Discussion . 73

3.5.1 Results on stationary obstacles and steep region (bumps) avoid-
ance . 73
3.5.1.1 Simulation-1 results 76
3.5.1.2 Simulation-2 results 76
3.5.1.3 Simulation-3 results 78
3.5.1.4 Simulation-4 results 79
3.5.1.5 Simulation-5 results 81
3.5.1.6 Simulation-6 results 82

3.5.2 Results on moving obstacle avoidance 84
3.5.2.1 Simulation-1 results 85
3.5.2.2 Simulation-2 results 88

3.6 Discussion . 91

4 studies on simulation and real time implementation of LQG con-
troller . 97
4.1 Introduction . 97
4.2 Methodology . 98

4.2.1 Vehicle Kinematics model 98
4.2.2 LQG controller operation . 100

4.3 Experimental set-up . 102
4.3.1 position measurements set-up 102
4.3.2 Vehicle heading measurements 104
4.3.3 Vehicle speed and steering measurements 105
4.3.4 Control interface with vehicle actuators 107
4.3.5 State observer design . 108

4.3.5.1 Prediction step: . 108
4.3.5.2 Update step . 109

4.3.6 Test conditions . 109
4.4 Results and Discussion . 111

4.4.1 Simulation results . 112
4.4.1.1 simulation-1 results:AV-4 map results 112
4.4.1.2 simulation-2 results:90◦ turn map 113
4.4.1.3 simulation-3 results:Round-about map 113
4.4.1.4 simulation-4 results:AF map 114

4.4.2 Validation results . 114

5 Summary of Work . 117

ix

www.manaraa.com

5.1 Conclusions . 117
5.2 Discussion . 119

6 Future Work . 121

References . 123

A Vehicle orientation representation using Quaternions 131
A.1 Quaternion properties and rotations 131
A.2 Derivations for Linearization of acceleration measurement model . . 135
A.3 Derivations for Linearization of magnetometer measurement model: 136
A.4 IMU Sensor properties . 137
A.5 Test conditions . 137

B NMPC controller code . 139
B.1 Stationary Obstacle avoidance code 139
B.2 Moving Obstacle avoidance code . 154
B.3 ABD-JDN algorithm flow chart . 173

C Path tracking algorithms . 175
C.1 Example of Analog read on Beagle bone black 175
C.2 Steering sensor measurement code 175
C.3 Stanley method . 176
C.4 Sensor properties . 178

x

www.manaraa.com

List of Figures

1.1 Critical areas for developing autonomous vehicle. 2

1.2 Overview of the present research work. 3

2.1 Schematic of vehicle lateral kinematics motion with front wheel drive
system. 16

2.2 1/5th vehicle front steering angle measurement set up. 17

2.3 Modified vehicle kinematics EKF fusion algorithm. 18

2.4 Heading comparison between IMU sensor measurements and vehicle
kinematics calculations. 20

2.5 Road wheel angle measurements for circular path test. 21

2.6 Vehicle speed measurements during circular path test. 21

2.7 Comparison of heading estimates with and without kinematics fusion
for static test condition. 23

2.8 Magnetic strength comparison for static test condition. 23

2.9 Rate of change of Norm of mag field for static test condition. 24

2.10 Norm mag field sum for static test condition. 24

2.11 Yaw rate variation for static test condition. 25

2.12 Norm Magnetic field before the calibration. 26

2.13 Norm Magnetic field after the calibration. 27

2.14 Vehicle path for different on-road test conditions. 28

2.15 Change in Norm of Mag field, when vehicle passes through magnetic
prone region. 28

2.16 Change in heading, when vehicle passes through magnetic prone re-
gion. 29

2.17 Reference heading for the Straight-line navigation test. 30

2.18 Comparison of vehicle heading with and without kinematics fusion al-
gorithm for straight line test condition. 31

2.19 Comparison in Norm of Mag field for straight line towards West test
condition. 31

2.20 Least square error change along straight line towards West path. . . 32

2.21 Reference heading for the 90 deg east to north navigation test. . . . 33

2.22 Comparison of vehicle heading with and without kinematics fusion al-
gorithm for 90 deg east to north test condition. 33

xi

www.manaraa.com

2.23 Comparison in Norm of Mag field for 90 deg east to north test condi-
tion. 34

2.24 Least square error change along 90 deg east to north test path. . . . 34
2.25 Reference heading for the 180 deg towards West test condition. . . . 35
2.26 Comparison of vehicle heading with and without kinematics fusion al-

gorithm for 180 deg towards West test condition. 35
2.27 Comparison of Norm of Mag field for 180 deg towards West test con-

dition. 36
2.28 Least square error change along 180 deg towards West test path. . . 36
2.29 Comparison of vehicle heading with and without kinematics fusion al-

gorithm for circular test condition. 37
2.30 Comparison in Norm of Mag field for circular test condition. 37

3.1 Schematic of obstacle-grade avoidance layout using MPC algorithm. 44
3.2 LIDAR view region for obstacle-grade analysis. 48
3.3 Schematic of stationary obstacle avoidance process. 51
3.4 Pacejka magic formula for estimating lateral tire forces 57
3.5 LIDAR view region for moving obstacle analysis 66
3.6 An illustration of moving obstacle state identification process in LI-

DAR view for moving obstacle zones; subplots (a) and (b) presents typ-
ical stationary obstacle detection process; subplots (c) and (d) presents
typical moving obstacle detection process 68

3.7 A typical steep region construction in the off-road navigation 75
3.8 simulation-1 results, with relatively simple obstacle field: (a) Path

followed by AGV for both variable and constant speed scenarios;(b)
Steering commands generated by MPC for variable and constant speed
scenarios; (c) Speed profiles for variable and constant speed scenarios. 77

3.9 simulation-1 results: (d) Wheel lift-off constraint for variable speed
scenario;(e) Wheel lift off constraint for constant speed scenario. . . 77

3.10 simulation-2 results, with relatively moderate obstacle field: (a) Path
followed by AGV for both variable and constant speed scenarios;(b)
Steering commands generated by MPC for variable and constant speed
scenarios; (c) Speed profiles for variable and constant speed scenarios. 78

3.11 simulation-2 results: (d) Wheel lift-off constraint for variable speed
scenario;(e) Wheel lift off constraint for constant speed scenario. . . 78

3.12 simulation-3 results, with relatively complex obstacle field: (a) Path
followed by AGV for both variable and constant speed scenarios; how-
ever, the constant speed scenario fails to reach target location safely.
(b) Steering commands generated by MPC for variable and constant
speed scenarios; (c) Speed profiles for variable and constant speed sce-
narios. 79

3.13 simulation-3 results: (d) Wheel lift-off constraint for variable speed
scenario;(e) Wheel lift off constraint for constant speed scenario. . . 80

xii

www.manaraa.com

3.14 simulation-4 results, with relatively moderate obstacle-road grade field:
(a) Path followed by AGV, which avoids both obstacles and road grade
regions. 81

3.15 simulation-4 results: (b) and (c) Speed and Steering commands gen-
erated by MPC for obstacle-road grade avoidance; (d) Wheel lift-off
constraint and vehicle heading variation for obstacle-road grade avoid-
ance. 82

3.16 simulation-5 results, with relatively complex obstacle-road grade field:
(a) Path followed by AGV, which avoids both individual and lengthy
obstacles and road grade regions; however, the vehicle can still pass
though moderate road grade regions to meet safety criteria and optimal
path. 83

3.17 simulation-5 results: (b) and (c) Speed and Steering commands gen-
erated by MPC for complex obstacle-road grade field avoidance; (d)
Wheel lift-off constraint and vehicle heading variation for complex
obstacle-road grade field avoidance. 84

3.18 simulation-6 results for uncertainty analysis with relatively moderate
obstacle-road grade field: (a) Path followed by AGV with thirty sim-
ulations, in which all simulations avoid both obstacles and road grade
regions. 85

3.19 simulation-6 results: (b) and (c) Speed and Steering commands gen-
erated by MPC for thirty corresponding simulations in (a); (d) Wheel
lift-off constraint for thirty corresponding simulations in (a), and all
simulations meet the safety requirements. 86

3.20 simulation-1 results for moving obstacle analysis with relatively mod-
erate obstacle field: (a) Path followed by AGV, which avoids both
moving and stationary obstacles. 87

3.21 simulation-1 results for moving obstacle analysis: (b) and (c) Speed and
Steering commands generated by MPC for avoiding both moving and
stationary obstacles (d) Wheel lift-off constraints to meet the safety
requirements. 88

3.22 Series of nine sequential events in moving obstacle simulation-1 results
for observing the first major change in AGV path; here, each even-
t/frame represent one MPC iteration/sample period and is numbered
from top left to bottom right. 89

3.23 Series of nine sequential events in moving obstacle simulation-1 results
for observing the second major change in AGV path. 90

3.24 simulation-2 results for moving obstacle analysis with relatively com-
plex obstacle field: (a) Path followed by AGV, which avoids both mov-
ing and stationary obstacles and road grade regions. 91

xiii

www.manaraa.com

3.25 simulation-2 results for moving obstacle analysis: (b) and (c) Speed and
Steering commands generated by MPC for the corresponding moving
obstacle simulation-2 field scenario (d) Wheel lift-off constraints to
meet the safety requirements. 92

3.26 Series of nine sequential events in moving obstacle simulation-2 results
for observing the first major change in AGV path; here, each even-
t/frame represent one MPC iteration/sample period and is numbered
from top left to bottom right. 93

3.27 Series of nine sequential events in moving obstacle simulation-2 results
for observing the second major change in AGV path. 94

4.1 Vehicle kinematics bi-cycle model for LQG controller 99
4.2 Vehicle kinematic model along desired path coordinates 100
4.3 Schematic of LQG controller architecture 101
4.4 Fritzing circuit diagram for sensor interface with Beagle Bone Black

Embedded system . 103
4.5 Radio communication between GPS base station and rover 104
4.6 Speed sensor mounting on 1/5th truck 105
4.7 Steering sensor mounting on 1/5th truck (Here, Speed sensor was not

yet installed on vehicle) . 106
4.8 Desired path map creation using Cubic spline fit. 111
4.9 Path tracking for general APS labs path 112
4.10 Path tracking for left-turn map . 113
4.11 Path tracking for Round-about map 114
4.12 LQG path tracking results on AF map 115
4.13 LQG path tracking test results comparison for AV-4 map 115

B.1 Flow chart for the ABD-JDN algorithm. 174

C.1 Potentiometer interface with Beagle bone black 176
C.2 Vehicle bi-cycle model along the desired path coordinates 177
C.3 Schematic of Stanley control law . 177

xiv

www.manaraa.com

List of Tables

2.1 RMS errors in heading (in ◦) for different test conditions 38

3.1 LIDAR view sub sections based on box coordinate system 48
3.2 N-MPC optimization parameters 74
3.3 Moving obstacle initial state values for the simulation 86

A.1 mean and variance of 3-axis gyro, accelerometer and magnetometer
sensor test data . 137

A.2 Test condition matrix and corresponding Mag zones for Mag-affected
tests. 138

C.1 Sensor properties used in LQG controller development. 178

xv

www.manaraa.com

www.manaraa.com

Author Contribution Statement

The Author contributed in several projects, in which some of the projects published
into journals and some of them are under review. The list is furnished below as
follows:

† Chapter.2 is accepted for publication in SAE 2020, and I am first author for
the publication. The work focuses on sensor fusion using Modified Extended
Kalman Filter for obtaining vehicle heading for the autonomous vehicle ap-
plication. The experiments were conducted at APSRC using 1/5th truck and
Python has been used for real-time implementation and data analysis.Dr.Naber
has proofread the manuscript and stand as co-author for the publication.

† Chapter.3 is submitted in SAE Connected and Automation Vehicles and I am
first author for the publication. The work mainly focuses on developing an
algorithm using Non linear MPC controller for avoiding road grade, stationary
and moving obstacle in an unstructured environment. The MATLAB with
CaSAi tool has been used to develop the algorithm. Further, a novel obstacle-
grade avoidance method has been proposed in the work and the manuscript has
been proofread by Dr.Naber and acts as co-author for the publication.

† Chapter.4 is under review to publish in IEEE intelligent systems and I am first
author for the publication. The publication focuses on simulation and imple-
mentation of LQG algorithm on 1/5th truck for path tracking while assessing
considerable sensor and environmental disturbance on the path. Python tool
has been used for developing LQG simulations and implementing it on real ve-
hicle. The Beagle Bone Black Embedded system has been used for real-time
implementation of LQG algorithm on vehicle and it interfaces with various sen-
sors including GPS base station, IMU, Speed sensor and steering measurement
module. Further, the sensor fusion algorithm using Kalman filter for making
vehicle state estimates to reject the environmental disturbances have been devel-
oped. The desired path has been made using Cubic spline fit. The manuscript
is under review and Dr.Naber proofreads the document and acts as co-author
for the publication.

† The Authour has contributed to several other projects including 1/5th car as-
sembly, real time data plotting for NEXTCAR project, Leddar VU8 sensor
studies for Volt vehicle in ARPA-e project, Volt Gen-1 model development with
Fuzzy logic control in association with Hitachi company.

xvii

www.manaraa.com

www.manaraa.com

Acknowledgments

I would like to thank Michigan Technological University and ARPA-e team for pro-
viding funding for the research work. Acknowledgements are provided to Graduate
school and mechanical department for providing continuous support for my doctoral
candidacy.
Though it seems simple to express my gratitude towards my guide Dr.Jeffrey D Naber,
he has been my sole inspiration to complete PhD studies. The journey started in
Spring 2015 and he has been instrumental in proving valuable technical suggestions
including purchasing autonomous vehicle, GPS base station, heading estimation mod-
ules. The technical discussions of controller development, vehicle model developments
and sensor fusion studies helped me to formulate the problem in systematic manner.
The sensors were getting failed and experiments were failed numerous times during
the research work. However, my advisor was keep encouraging me to have faith and
inspired me at every stage of my failure. The most important attributes, I learned
from my advisor is to have dedication, hard work and discipline towards the research
work. I thoroughly enjoyed the freedom he has given to me and I certainly owe a big
thanks to him. It is always been my pleasure to work with him and I am fortunate
to have such a good mentor in my life.
I am very grateful to have Dr. Bo Chen, a passionate and knowledgeable person in
my committee, since Summer 2016. She has provided valuable suggestions in the pro-
posal defense and acts as active member in ARPA-e projects. These projects given
me the opportunity to explore different control algorithms.
I owe many thanks to Dr.Jeremy for supporting my research and providing lab space
for the research work. I am fortunate to have such hands on experience person in my
advising committee.
I would also like to thank Dr. Stephen Hackney for serving as my PhD committee
member and his valuable lessons in Battery design helped me to chose the appropriate
vehicle for the research work.
I would like to mention special thanks to Paul, who have given many suggestions
during the building of 1/5th truck and for allotting space and instruments in the
Electronics lab. The GPS base station require near window operation and Paul has
allotted space and encouraged me for conducting the research in APS labs.
I would also like to thank Master students Shuvodeep, Shubham, Raghu for helping
me to build the 1/5th truck. The project was started from scratch and Shuvodeep
helped in procuring the hardware and helped me to setting up the sensor interface.
There were many situations, where we worked whole night for debugging the wiring
issues. I would really appreciate Shubham for designing and modifying the vehicle
body and chassis for conducting the tests even during wintry conditions. The en-
closed design allowed me to arrange controller, sensors and external batteries in the

xix

www.manaraa.com

vehicle and can operate during the houghton winter conditions.
I would like to thank my best friends Gopi, Ramana, Abdulla and Nari for their sup-
port during my early career growth and it is the right time to convey my gratitude
towards them. I learned many things from them and I would certainly cherish their
memories at every stage of my life. I would also like to thank, my role model and
Master’s advisor Prof. Venkateshan, from IIT Madras, for his encouragement, care
and unconditional faith on me.
I am also very fortunate to have some of the best colleagues, who made my research
enjoyable at APS labs. Stats,Shreyas,Niranjan,Behrouz and Zhou are some of the
fellow PhD students had great discussions and provided valuable suggestions dur-
ing the tough times. I would also like to give my appreciation to Master students
Gaurav,Vishal,Mahesh and Vasu, who have worked with me provided support in han-
dling research material and weekly meetings. I would like to thank all APS crew for
providing support for conducting the research work. Special thanks to my friends
at Michigan tech university including Zakkam, Yaswanth,Siva, Laxmi, Moiz, Rajesh,
Hemanth, Sumanth, Sashank,Nitin,Pathak and many others.
Last but not least, special thanks to my family, without their support, I wouldn’t
have imagined the PhD degree. I blessed to have supportive parents, Husenamma,
Pedda Dastagiri Garu, who have always encouraged me to chose right path and given
freedom to go beyond the limits. My Wife, Hussain Bee, who have all the patience
in world and cared me at every stage of my life. I owe her a big Thank you for her
continuous support and understanding me at tough times.My brother, Mahaboob
basha, who have vital role in my life and had continuous, unconditional faith on my
abilities. I am really fortunate to have such family members and finally my two lovely
kids Aryan and Arshad, with whom I would love to play and forget the rest of world.

xx

www.manaraa.com

Definitions

Levels of Autonomy:

The Society of Automotive Engineering (SAE) has defined total of 6 levels from fully
manual mode to fully autonomous mode.

Level-0: Manual mode

There is no driving automation during this mode and it is simply the current conven-
tional vehicle operation. Though, some features including emergency braking would
help driver, humans provide dynamic driving task and does not qualify for the au-
tomation.

Level-1: Driver Assistance mode

The vehicle equipped with single automated feature of either steering or acceleration
of the vehicle (cruise control). This adaptive cruise control assist driver in maintaining
the safe distance from next car.

Level-2: Partial Automation mode

This mode is also called Advanced Drive Assistance system or ADAS. Here, the
vehicle can control steering as well as acceleration and deceleration. However, the
Driver still has to sits in the driver take control of car at any time.

www.manaraa.com

Level-3: Conditional Automation mode

Level-3 is a critical transformation for autonomous vehicle development. These vehi-
cles have ability to detect surroundings and can make informed decision for themselves
such as overtaking on slow moving vehicle. However, driver must remain alert and
ready to take control of it, when the controller could not able to execute the task.

Level-4: High Automation mode

This mode of vehicle dose not require human intervention in most circumstances. The
main difference between Level and level- 4 is that, Level-4 vehicle can intervene and
self correct, if things go wrong or system failure occurs. However, human still have
option of overtaking the vehicle in manual mode.

Level-5: Full Automation mode

These vehicle do not require human attention and the human dynamic driving task
is eliminated. These vehicles would not even have steering or acceleration/braking
pedals.

xxii

www.manaraa.com

List of Abbreviations

(xg, yg) Target position, [m].
(x0, y0) Vehicle current position w.r.to vehicle C.G. location, [m].
(xom, yom) measured obstacle position w.r.to vehicle current position, [m].
(xop, yop) Predicted obstacle position w.r.to vehicle current position, [m].

(x
(j)
mobs, y

(j)
mobs) jth moving obstacle position w.r.to vehicle current position, [m].

v
(j)
mobs j

th moving obstacle longitudinal velocity, m/s.

ψ
(j)
mobs jth moving obstacle angle of shoot, [◦].

O
(j)
m,i jth measured obstacle position, with i = 0, 1, ..n predicted

positions,where j = 1, 2, 3, ..k detected obstacles in LIDAR

view with O
(1)
m,0 = (x

(1)
om,0, y

(1)
om,0), O

(2)
m,1 = (x

(2)
om,1, y

(2)
om,1).., in [m].

Pi vehicle predicted Positions, where i = 0, 1, 2, ..N predictions
with P0 = (x0, y0), P1 = (x1, y1).., in [m].

Pmv,i vehicle predicted Positions for moving obstacle analysis,
where i = 0, 1, 2, ..n predictions with
Pmv,0 = (xmv,0, ymv,0), Pm,1 = (xmv,1, ymv,1).., in [m].

αf , αr Front and rear slip angle in [rad].
ψmobs Angle of shoot or heading of moving obstacle in [rad].
ψulimit Heading upper limit for dangerous moving obstacle in [rad].
ψllimit Heading lower limit for dangerous moving obstacle in [rad].

ψ̇ vehicle yaw rate in [rad/sec].
γf vehicle steering rate in [rad/s].
θ Road grade in [rad].
μz,x vehicle longitudinal load transfer coefficient in [N/(m/s2)].
μz,yf , μz,yr vehicle lateral load transfer coefficients

in front,rear axle [N/(m/s2)].
ψ Vehicle heading or yaw in [rad].
a, b penalty terms in cost function for vertical load, , [N].
ax vehicle longitudinal acceleration in [m/s2].
d0 Distance between vehicle current position

and Target location in [m].
df Distance between vehicle end of prediction position and

Target location in [m].
Dsmobs

vehicle lateral speed in [m/s].
Dvmobs

vehicle lateral speed in [m/s].
Fgrade Grade force in [m/s].
Fyf , Fyr Lateral force on front,rear axle in [N].
Fz,f , Fz,r Dynamic vertical load on front,rear axle in [N].
Fz,f0, Fz,r0 Static vertical load on front,rear axle in [N].

xxiii

www.manaraa.com

Fzthr Tire threshold vertical load in [N].
Fzoff vehicle lateral speed in [m/s].
Iz moment of inertial about z-axis in [kg −m2].
Jf vehicle Jerk in [m/s3].
lf , lr Distance from C.G. location to front/rear axle [m].
l Wheel base in [m], (lf + lr).
Ld LIDAR sensor detection range, in [m].
Lp Prediction horizon length/distance in [m].
Muf ,mur Unsprung mass of front,rear axle side in [kg].
Ms Sprung mass in [Kg].
Mtotal Total mass in [Kg].
N Number of predictions.
Od Distance between current vehicle position

to stationary obstacle position in [m].
Omobs Distance between current vehicle position

to moving obstacle position in [m].
Stthr vehicle lateral speed in [m/s].
Te MPC Execution horizon in [sec].
Tp vehicle prediction horizon in [s].
Tp Prediction horizon in [sec].
vmobs Velocity of moving obstacle in [m/s].
vx vehicle longitudinal speed in [m/s].
vy vehicle lateral speed in [m/s].
U Control vector.
Z State vector.
D(.) Generic vehicle dynamic model function.
L(.) Generic prediction length constraint.
Ost(

.) Generic stationary obstacle avoidance constraint.
Omv(

.) Generic moving obstacle avoidance constraint.
S(.) Generic dynamical safety constraint.
T (.) Generic terminal cost.
�(.) Pacejka magic tire model function.

xxiv

www.manaraa.com

Abstract

The demand for safety and fuel efficiency on ground vehicles and advancement in
embedded systems created the opportunity to develop Autonomous controller. The
present thesis work is three fold and it encompasses all elements that are required
to prototype the autonomous intelligent system including simulation, state handling
and real time implementation. The Autonomous vehicle operation is mainly depen-
dent upon accurate state estimation and thus a major concern of implementing the
autonomous navigation is obtaining robust and accurate data from sensors. This is
especially true, in case of Inertial Measurement Unit (IMU) sensor data. The IMU
consists of a 3-axis gyro, 3-axis accelerometer, and 3-axis magnetometer. The IMU
provides vehicle orientation in 3D space in terms of yaw, roll and pitch. Out of which,
yaw is a major parameter to control the ground vehicle’s lateral position during nav-
igation. The accelerometer is responsible for attitude (roll-pitch) estimates and mag-
netometer is responsible for yaw estimates. However, the magnetometer is prone to
environmental magnetic disturbances which induce errors in the measurement. The
initial work focuses on alleviating magnetic disturbances for ground vehicles by fus-
ing the vehicle kinematics information with IMU senor in an Extended Kalman filter
(EKF) with the vehicle orientation represented using Quaternions.

The previous studies covers the handling of sensor noise data for vehicle yaw estima-
tions and the same approach can be applied for additional sensors used in the work.
However, it is important to develop simulations to analyze the autonomous naviga-
tion for various road, obstacles and grade conditions. These simulations serve base
platform for real time implementation and provide the opportunity to implement it
on real road vehicular application and leads to prototype the controller. Therefore,
the next section deals with simulations that focuses on developing Non-linear Model
Predictive controller for high speed off-road autonomous vehicle, which avoids unde-
sirable conditions including stationary obstacles, moving obstacles and steep regions
while maintaining the vehicle safety from rollover. The NMPC controller is developed
using CasADi tools in MATLAB environment.

As mentioned, the above two sections provide base platform for real time implementa-
tion and the final section uses these techniques for developing intelligent autonomous
vehicular system that would track the given path and avoid static obstacles by re-
jecting the considerable environmental disturbance in the given path. The Linear
Quadratic Gaussian (LQG) is developed for the present application, The model de-
veloped in the LQG controller is a kinematic bicycle model, that mimics 1/5th scale
truck and cubic spline has been used to connect and generate the continuous target
path.

xxv

www.manaraa.com

www.manaraa.com

Chapter 1

Introduction

1.1 Background and Motivation

The technology advancements in embedded processing, GPS accuracy and
efficient control algorithms provide opportunity to develop full fledged au-
tonomous vehicle to meet safety and emissions. The future predictions from
Victoria Transportation Policy Institute indicated that the vehicle manufac-
tures tend to produce half of new vehicles are autonomous by 2045 and half of the
vehicle fleet is autonomous by 2060 [1]. Further, the unmanned buses and delivery
trucks would become common by 2030 and optimistically the commercial cars may
be estimated to be available for the safe and reliable operation by 2030. It is further
predicted that, by 2060, there is 40% increased safety, 35% improvement in congestion
and emissions and 30% improvement in driver stress fatalities. However, the predic-
tions are made with optimistic perspective and there were many past experiences
with vehicle crashes on both on road and off road applications.

1.1.1 Critical Areas in Autonomous Vehicle Development

The major challenges in developing the autonomous controller is to obtain robust
and noise free sensor data, efficient algorithm development for fast processing on em-
bedded systems and simulations and real time implementation of developed control
algorithms on actual vehicle is shown in Fig.1.1. The first challenge require develop-
ment of several fusion algorithms for processing sensor information and making best

1

www.manaraa.com

Figure 1.1: Critical areas for developing autonomous vehicle.

estimates for obtaining vehicle surrounding information. For instance, the vehicle
yaw or heading is critical parameter in developing autonomous navigation and it is
prone to external magnetic fields. Therefore, it is important to obtain robust and
correct heading data, when vehicle is affected with unwanted, sudden magnetic fields
on the path. The present work deals this problem by developing the modified ex-
tended kalman filter for fusing the vehicle kinematics with IMU magnetometer data.
Further, this algorithm has been developed using Python script and used in the real
time implementation of LQG controller on actual vehicle. The developed algorithm
has improved the LQG controller performance and eliminated the unwanted external
magnetic field effects during the course of desired path tracking on 1/5th truck.
The second challenge is to develop efficient control algorithms that should not only
provide robust and safety operation but also should meet the implementation re-
quirements. However, to ensure robustness and safety in control algorithms, proper
methodology for handling vehicle dynamics model and constraints are required. The
inaccuracy in dynamic model and constraint handling leads fatal vehicle crash. Fur-
ther, it is important to verify the algorithm in simulations for saving the cost and
time. The Model predictive controller algorithm best suits for present application, as
it foresees the future in advance and reacts to the current situation. However, the
inaccuracy in model development and uncertainty in sensor information can lead to
vehicle crash. The careful consideration of vehicle dynamics, vehicle rollover safety
and other constraints requires thorough study on vehicle lateral and longitudinal dy-
namics and obstacle avoidance algorithms. This challenge has been undertaken in the
current research work and developed a non-linear MPC algorithm that would avoid
both moving and stationary obstacles for high speed off road autonomous vehicles.
These vehicles can carry human needs to the destination in the off-road conditions,

2

www.manaraa.com

Figure 1.2: Overview of the present research work.

while maintaining the safety from both moving and stationary obstacle. The military
sections, forest or unstructured path rescue operations can best utilize the features
of current research work.
The third challenge in developing the autonomous vehicle is to implement the devel-
oped control algorithms on actual vehicle. Though, the development of non-linear
MPC controller for both moving and stationary obstacles for high speed application
are made through simulations, the real-time implementation of control algorithm on
actual vehicle is still implausible due to computational burden and vehicle integration.
The computational burden can be solved by using the fast processing embedded sys-
tems and off-loading some of the calculations including terrain map processing,moving
obstacle processing etc through work stations. On the otherhand, the vehicle integra-
tion adds up additional effort in debugging the existing CAN signals for autonomous
controller. Therefore, in the current research work, the real time implementation has
been done on 1/5th Electric truck with the LQG controller algorithm. The work has
laid out the perfect platform for future MPC controller implementations and debug-
ging of vehicle motors and actuator signals have been made. Further, it is easy to
export the developed algorithms into actual vehicle as it has similar powertrain and
actuators for the autonomous navigation. This save lot of time,effort and cost. How-
ever, the present work does not included the Hardware In Loop (HIL) tests and it is
left for the future work.

1.1.2 Putting pieces together

The present work is three fold including sensor fusion, controller development using
simulations and real time implementation of developed controller is shown in Fig. 1.2.
The first phase of research is focused on developing the Modified Extended Kalman
Filter algorithm for alleviating the external magnetic effects on vehicle yaw estima-
tions. The algorithm is tested for several test path conditions and the results shows
that the fusion of vehicle kinematics in IMU measurements improved the vehicle yaw
estimation and detailed results are furnished in Chapter. 2. This Chapter mainly

3

www.manaraa.com

deals with various sensor noise and their effect on vehicle yaw estimations and re-
stricted to individual sensor studies. However, the application of developed modified
EKF algorithm for autonomous vehicle path tracking is included in third phase of re-
search work, which is explained in Chapter. 4. Further, the second phase of research
laid out base platform for systematic design of controller development for autonomous
navigation, which is detailed in Chapter. 3 . Though, the developed Non-linear MPC
algorithm in Chapter. 3 is not directly implemented in third phase of work due to
computational burden, but the methodology used in the work has been replicated in
third phase of work. This includes, the processing of vehicle states, sensor measure-
ments, and controller actuation for autonomous navigation. The implementation of
second phase of work on actual vehicle requires high processing systems and it is left
for the future work.
Therefore, the third phase of research exploits the developed algorithms from modi-
fied EKF and non-linear MPC methodology and implemented on actual 1/5th truck
using LQG controller.

1.2 Goals and Objectives

As mentioned,the objectives of present work is three fold and it is explained as follows,

1.) Developing sensor fusion techniques that can handle sensor noise and reject
considerable environmental disturbance

2.) Developing algorithms that would simulate autonomous vehicle navigation
through unstructured environment by avoiding stationary and moving obsta-
cles

3.) real time implementation of LQG controller for path tracking on 1/5th truck
using GPS base station, IMU and Klaman observer.

1.3 Organization of work

The chapter-1 provides background and motivation for the present thesis work and
chapter-2 details about sensor fusion using Extended Kalman filter for estimating
the vehicle heading. Further, this chapter-2 provides comprehensive literature re-
view, methodology, experimental setup, test conditions and test results for the sensor

4

www.manaraa.com

fusion techniques. Chapter-3 explains NMPC controller development for off road un-
structured environment to avoid obstacles and road grade by maintaining the vehicle
safety from rollover. This chapter details about literature, methodology for station-
ary and moving obstacles, and simulation results for stationary and moving obstacle
avoidance by preventing the vehicle from rollover. Chapter-4 includes the real imple-
mentation of LQG controller on 1/5th truck. This chapter details about experimental
set up, that includes interfacing IMU,speed,GPS and Leddar One sensors with Beagle
Bone Black embedded system. Further, the chapter provide state estimation studies
using kalman filter is explained. Chapters 5 and 6 provide conclusions and future work
based on the current research work. Finally, Appendices provide supporting material
including Quaternion definitions, MATLAB codes for NMPC controller development
and various sensor properties.

5

www.manaraa.com

www.manaraa.com

Chapter 2

Sensor Fusion studies for vehicle
yaw estimation

The vehicle orientation estimations are important in autonomous navigation field [2],
vehicle safety [3] and driver assistance technologies. In case of lateral controller de-
velopment for autonomous navigation, yaw estimations are critical to track the given
path [4]. However, the yaw estimates are prone to error with external magnetic
disturbances. In the current paper work, we use UM7 3rd generation MEMS based
inertial measurement unit for estimating vehicle attitude and heading/yaw. The cur-
rent sensor consists of 3-axis accelerometer, 3-axis rate gyro and 3-axis magnetometer.
Further, the MEMS based inertial unit has advantage of being low cost and compact
in size to make easy for installation on vehicle. With appropriate installation and
calibration of each sensor on vehicle body can eliminate misalignment errors between
sensor co-ordinates and vehicle body coordinates. That said, the current UM7 sensor
can provide accurate geomagnetic field, angular rates and gravity vectors in body
coordinates in undisturbed, magnetic free environment [5, 6]. The orientation of a
body in 3D space can be defined with Euler’s angles including, roll, pitch and yaw.
Further the combination of roll and pitch is called attitude and yaw is also called the
heading. In the present work, we solve for vehicle orientation and deduce the equation
for yaw estimations from it. In general, the orientation of a body in 3D space can be
estimated by integrating the gyro rate outputs. However, the gyroscope data suffers
from drifting phenomena and result would accumulates error with time [7]. This
Wahba [8] problem can be solved by fusing the information from accelerometer and
magnetometer outputs. However, the accelerometer and magnetometers are prone
to motion acceleration and external magnetic disturbances [9, 10]. Therefore, to
make accurate orientation estimations, many fusion algorithms have been employed
over the years. Out of which two major categories are, complementary filters and

7

www.manaraa.com

Kalman filters. Complementary filters perform fusion in frequency domain [11], [12],
whereas the Kalman filters follows stochastic approach [13, 14, 15]. The current work
employs later approach, which has two basic steps including prediction and update
step. Prediction step uses gyroscope data to propagate the orientation called priori
estimation. In update step, the magnetometer and accelerometer outputs used for
correcting the above priori estimations called posterior estimation.
However, ground vehicular models are highly non-linear and conventional Kalman
filter estimates are not adequate. The most common approach is to employ Extended
Kalman Filter [6], which deduce the non-linearities by linearizing the current state es-
timates. The steps after linearization follows the conventional Kalman filter, which is
explained in the above section. But, there are other approaches including Unscented
Kalman filter [14], which handles severe non-linearities and computationally heavier
for practical implementation. In this work, we have employed EKF for estimating the
vehicle orientation and making special case for handling yaw estimations in magnetic
disturbance environments. There are numerous algorithms in the current literature
to handle vehicle orientation and each study would make different strategies in terms
of defining state vectors, formulating filter structure etc. However, the core concept
behind all these methodologies should be same. i.e., accelerometer would be used for
correcting the attitude estimations and magnetometer is responsible for correcting
yaw estimations. More clearly, the accelerometer only provides attitude information
and the filter has to use magnetometer information for correcting the yaw estimates.
Therefore, the major problem in estimating the yaw is that, it suffers from various
magnetic disturbances including hard iron effects, soft iron effects and environmen-
tal magnetic disturbances [5]. The current UM7 inertial measurement unit has the
capability to eliminate hard iron and soft iron effects by the magnetometer sensor cal-
ibration [5, 16]. However, the external magnetic disturbances can’t be compensated
due to its high uncertainty in nature [17]. Therefore, in the following context the
magnetic disturbance refers to the external or environmental magnetic disturbance
alone and it does not include soft and hard iron effects. The main motivation of
this paper work is to alleviate external magnetic disturbances on yaw estimations by
taking advantage from vehicle kinematics. Therefore, the present paper work results
are applicable for ground vehicular applications and not recommended for aerial ap-
plications.
Many studies have been made to handle the magnetic disturbances; From studies
[17, 18, 19], used magnetic disturbance as a criterion to reduce weightage on magne-
tometer measurement. However, these techniques would deviate faster as the mag-
netic disturbances last longer. Further, fusion of different sensors in vehicle orientation
estimation not only effect the yaw estimation but also attitude estimations. Thus,
the magnetometer sensor outputs would also affect vehicle attitude. To address this
issue, some studies restricted the magnetometer output for yaw estimations alone.
[9, 10] proposed two-layered structure in Kalman filter by decoupling the quaternion
multiplication factors. Suh [20] proposed an indirect Kalman filter with two step

8

www.manaraa.com

measurement update to restrict the magnetometer outputs only to yaw estimations.
In addition, Gang Shi [21] et al. proposed a two-step measurement update method
in Kalman filer along with vehicle kinematics for alleviating the magnetic effects on
yaw estimations. However, this paper restricts its application to straight line and it
is highly insensitive to varying vehicle status, which depends on vehicle kinematics
and Coriolis components.
From the above discussion, it can be clearly seen that the magnetic disturbance plays
a critical role in yaw estimations. However, this paper takes the advantage of vehicle
kinematics, which can provide yaw rate dynamics from completely different perspec-
tive. The required parameters for vehicle kinematics calculations are steering wheel
angle and vehicle speed, which are clearly independent from magnetic disturbances
and prove to be potential solution for the ground vehicle yaw estimations. Therefore,
the improved EKF algorithm using vehicle kinematics information is as follows:

1). The time propagation step is unchanged and the priori estimation would be
made from gyroscope output.

2). The update step would use normalized geomagnetic field on horizontal plane
either from magnetometer or from vehicle kinematics based on the magnetic field
disturbance strength. This process would not only alleviate magnetic effects on
yaw estimation but also on attitude estimation.

The present work is organized as follows: section 1 (Introduction) explains about
various techniques used for estimating vehicle orientation and a comprehensive ex-
planation on Extended Kalman Filter algorithm. Section 2 (Methodology) explains
conventional Extended Kalman Filter used in the current work as benchmark filter
algorithm and extends to modified EKF algorithm to alleviate external magnetic dis-
turbances for accurate yaw estimations. Further, explanation on vehicle kinematics
have been furnished. Section 3 (Experimental set-up) includes vehicle set-up and
explanation on noise of each sensor including accelerometer, gyro, magnetometer,
steering wheel measurement and speed sensor. Further, calibration of vehicle kine-
matics calculations with IMU heading measurements has also been provided. Section
4 (Results and Discussion) focus on improved EKF algorithm performance for straight
line, 90◦ turn, round about turn and circle tests. In the end, Section 5 provides con-
clusions and recommendations for the future work.

9

www.manaraa.com

2.1 Methodology

2.1.1 Conventional EKF algorithm

The present paper deals with quaternions to represent orientation of the object. It
has several advantages over Euler’s angle representation including, not suffering from
Gimbol lock, low dimensionality and providing a linear formulation of orientation
dynamics [9]. That said, in 3D space, any given object orientation with respect to a
reference frame can be represented by a unit quaternion q, which is defined as

q =
[
q0 q1 q2 q3

]T

Where q0 is a scalar part and
[
q1 q2 q3

]T
is the vector part of the quaternion.

Further, [bg1 b
g
2 b

g
3] is gyroscope bias in X-axis, Y-axis, and Z-axis respectively. The

gyroscope handles the quaternion dynamics and it is important to consider gyroscope
bias as states of the system to reduce gyro drift errors. Therefore, the Extended
Kalman Filter in this section consider the system with seven states including four
from quaternion and three from gyro bias.

x =
[
q bg

]
=

[
q0 q1 q2 q3 bg1 bg2 bg3

]T
This EKF algorithm works accurately, when there are no external magnetic fields
that result in systemic errors. Therefore, this algorithm serves as a benchmark for
the modified/Kinematics-fusion EKF explained in the next section. The conventional
EKF is an extension of linearized Kalman filter presented in [6]. The derivations of
system model equations are given in Appendix.A. The Euler angles including yaw,
roll and pitch are computed from these final quaternion estimates.
The present paper considers North, East, Down (NED) as reference frame and For-
ward, Right and Down as body frame (B-frame) [16]. The Euler angles, yaw, roll
and pitch can be chosen from rotations around B-frame Z, Y and X axis respectively.
The following section, provides notations used in the rest of the work.
x denotes the system state vector; bg is the gyroscope bias; mr and gr are geomagnetic
and gravity vectors resolved in the reference frame; m, w and a represents the 3-axis
IMU sensor data including magnetometer, gyroscope and accelerometer respectively;
The matrices, Cb

r denotes the rotation matrix from reference frame to body frame; O
and I represents the null and identity matrices with their subscripts indicating their
dimensions.
Subscripts: x, y and z for a given vector represents the vector measurement in their

10

www.manaraa.com

respective axes; k represents the current time step; r, denotes reference frame; b, de-
notes body frame; m, w and a denotes magnetometer, gyro and accelerometer sensor.

2.1.2 System propagation Model

As mentioned, the system state vector consists of quaternion and gyro bias which is
defined as,

x =
[
qT bTg

]T
(2.1)

The propagation model estimates the system dynamics using gyroscope angular mea-
surements and can be written in terms of Quaternion rotation as,

q̇ =
1

2
q
⊗

w (2.2)

The Equation. (2.2), can be expanded in matrix form as follows (see Quaternion
multiplication in Appendix.A.1 for more details),

q̇ =
1

2
S(w)q =

1

2
S(q)w (2.3)

Where, q
⊗

w denotes Quaternion multiplication, which implies rotation of Quater-
nion by the amount of w rate in X, Y and Z directions. More details on system
dynamics, S(w) and S(q) are explained in the Appendix.A.1. As mentioned ear-
lier, the gyro bias is a part of state vector and needs to be compensated by system
dynamics. Therefore, the final system propagation model can then be expressed as,

q̇ =
1

2
S(w − bg)q =

1

2
S(q − bg)w (2.4)

The above system dynamics model Equation.2.4, is a non-linear continuous model and
this needs to be linearized and discretized to apply EKF to the system. A simple first
order linearized model can be made using Euler’s forward method and is sufficient for
this application. A simple first order linear discrete model can be written as follows,

q̇k = (qk+1 − qk)/T (2.5)

11

www.manaraa.com

Where, T, is the iteration time between sample k+1 and k From Equations.2.4 and
2.5

q(k + 1) =
T

2
S(qk)w −

T

2
S(qk)b

g + qk

bgk+1 = bgk

Therefore, the system propagation model along with gyro bias as state vector be-
comes,

xk+1 = Axk +Buk

[
q
bg

]
k+1

=

[
I4×4 −T

2
× S(q)

03×4 I3×3

]
xk +

[
T
2
× S(q)
03×3

]
wk (2.6)

Where,

A =

[
I4×4 −T

2
× S(q)

03×4 I3×3

]
, B =

[
T
2
× S(q)
03×3

]

The complete derivation and matrix manipulations can be seen in Appendix.A.1.

2.1.3 System Measurement model

The measurement model uses accelerometer and magnetometer measurements, with
the fact that the gravity vector and geomagnetic north vector are known at a given
position in the NED frame. Therefore, the measurement model can be explained into
two main sub-models namely Accelerometer model and Magnetometer model

2.1.3.1 Accelerometer model

As mentioned, the accelerometer model assumes the gravity vector is known in the
NED frame at a given position. This known gravity vector can be rotated into
B-frame using rotation matrix Cb

r to get the acceleration in B-frame. In essence,
this calculated acceleration vector is propagated from the previous system dynamics
model, Equation 2.6. Finally, in EKF update step, this calculated acceleration
in B-frame can be compared with the measured acceleration from accelerometer,

12

www.manaraa.com

which is measured in B-frame. An adaptive weightage has been applied based on
the magnitude in the error, which is discussed in the next section. Therefore, the
accelerometer model for calculating acceleration in B-frame is as follows,

yba = Cb
r(ae − g) + eba + bba (2.7)

Where, yba, is calculated acceleration in B-frame
Cb
r , is rotation matrix from reference frame to B-frame, defined in Appendix.A.1.

ae, is external acceleration in B-frame
g, reference gravity vector
eba, b

b
a, are accelerometer noise and bias respectively in B-frame

In the present work, the acceleration due to external forces are negligible as the
current vehicle speed is less than 3 m/s and the tests are conducted at nearly constant
speed. Further, the bias in accelerometer is quantified and compensated through
accelerometer calibration, detailed in experimental set-up section. The noise in the
accelerometer is modeled as Gaussian white noise and the details of sensors noise is
provided in Table.A.1, in Appendix.A.2. Therefore, the adjusted final accelerometer
measurement model becomes [6][22],

yba = Cb
r(−g) + eba (2.8)

2.1.3.2 Magnetometer model

The magnetometer can be modelled in a similar fashion of accelerometer. In the
present work, magnetometer model works based on the fact that the geomagnetic
north vector is known at a given location in reference frame. Madwick [12] uses
modified magnetic reference vector to have same inclination as the measurements.
However, this approach simplifies the magnetic declination to 0 deg and thus making
measurements to correct offset only in measured declination angle. Therefore, to
account for magnetic declination and have same inclination as measurements, use
known geomagnetic north vector (mr) for the given location and set its z-axis reference
to 0 and is then rotated back to B-frame [6]. This can be formulated in magnetometer
model as follows,

ybm = Cb
r(mr) + ebm (2.9)

ybm is calculated magnetic field in B-frame
mr, reference/known magnetic field vector
ebm, magnetometer noise in the B-frame
Similar to accelerometer, the magnetometer noise is modeled using Gaussian white

13

www.manaraa.com

noise. The calibration of each sensor and their scaling and bias values are given in
experimental section.
From equations 2.8 and 2.9, both accelerometer and magnetometer models are non-
linear, and it is required to linearize the models to use it in the EKF implementation.
The details of linearization have been given in Appendix .A.2. The final measurement
model to implement in EKF filter becomes,

y =

[
yba
ybm

]
= Cxk (2.10)

Where,

C =

[
Ca 03×3

Cm 03×3

]
, xk =

[
q
bg

]
k

Here, Ca and Cm are Jacobian matrices, results from linearizing the accelerometer
and magnetometer models and is detailed in Appendix.A.2. The bias term in magne-
tometer is neglected due to the assumption that, the magnetometer is well calibrated
before the tests. However, a brief explanation on magnetometer calibration is pro-
vided in results section.

2.2 Adaptive EKF Filter

By using the propagation and measurement model equations 2.6-2.10, the adaptive
EKF filter for the given IMU sensor measurements can be implemented as follows:

2.2.1 Prediction step

Provide initial values of filter state estimates including x̂k and P̂k [21] based on sensor
data and in the present work, process noise Q has been considered as simple piecewise
noise to reduce the computational burden on implementation.

xk+1 = Ax̂k +Buk (2.11)

P k+1 = AP̂kA
T +Qk (2.12)

The matrices A,B and C are already defined in the previous sections. Therefore, the
propagation of prediction step from equations 2.11,2.12 are called priori estimations

14

www.manaraa.com

at k+1 step, can be computed using gyroscope output, and posterior estimations at
step k. Here, the posterior estimations are computed from update step, after the
initial iteration is completed through initial guess estimates. c

2.2.2 Update step

The outcomes of update step is called posterior estimations and these can be calcu-
lated using the outputs from magnetometer and accelerometer sensors, measurement
models and priori estimations at k+1 step:

Kk+1 =
P k+1C

T
k+1

Ck+1P k+1Ck+1 +R
(2.13)

x̂k+1 = xk+1 +Kk+1(yk+1 − Ck+1xk+1) (2.14)

P̂k+1 = (I7×7 −Kk+1Ck+1)P k+1 (2.15)

Here, R is a measurement noise vector to provide weightage for measurements and
K is a Kalman gain vector to distribute weightage between model propagation and
measurements. As mentioned earlier, the state vector xk consists of 7 states and thus
to maintain dimensionality, it is required to append 3×3 null matrix to the mea-
surement model is shown in equation. 2.10. After the update step, the quaternion in
posterior estimations need to preserve its unit-norm property. Therefore, the updated
quaternion in state vector needs to be normalized for recursive EKF implementation.

qk+1 =
q̂k+1

‖q̂k+1‖
(2.16)

The Equation. 2.16, provides normalized quaternion, which can be used for calculat-
ing the Euler angles including yaw, roll and pitch using rotation matrix Cb

r [21][19].
Finally, the posterior estimates from equations 2.13-2.16 serve as inputs for the priori
estimations given in equations 2.11-2.12 and evolves the filter in time zone recursively.

2.2.3 Modified/Kinematics-fusion EKF

As mentioned above, the conventional EKF filter works accurately, when the system
is free from external magnetic disturbances. In order to alleviate the effect of external
magnetic disturbance, the conventional EKF filter is integrated with the vehicle kine-
matics information. This fusion of vehicle kinematics information with conventional

15

www.manaraa.com

Figure 2.1: Schematic of vehicle lateral kinematics motion with front wheel
drive system.

EKF provide robust vehicle orientation estimations and avoid sudden jerks in the
autonomous navigation. The above conventional EKF has an advantage of keeping
magnetometer model separated from accelerometer and for some extent, the effect of
external magnetic disturbance only changes the yaw value in orientation estimation
[6] by making reference magnetometer vector Z-axis value to 0. Further, the present
EKF approach normalizes the magnetometer measurements in the update step. This
normalized magnetometer measurement vector can be replaced with the vehicle kine-
matics yaw information by applying a simple trigonometric rule, during the external
magnetic field disturbance.
The modified EKF algorithm keeps prediction step unchanged. The update step
requires knowledge from vehicle kinematic model. This is briefly explained in the
following section. The lateral kinematics [22] model assumes bicycle model with slip
angles at both wheels are zero. From [22], this is a valid assumption for vehicle
speeds up to 5 m/s and further, the vehicle consists of front wheel drive Ackerman
steering mechanism with ratio from steering wheel to road wheel given in Equation.
2.20. Therefore, the rear steering wheel angle δr for the current vehicle is considered
zero. From the trigonometric rules and Fig.2.1, the equation for yaw rate becomes
[22],

Ψ̇ =
V cos(β)

lf + lr
tan(δf) (2.17)

Where, vehicle slip angle

β = arctan(
lr tan(δf)

lf + lr
) (2.18)

Here Orc is instantaneous rolling center and Vcg is vehicle center of gravity. In
addition, for a typical Ackerman steering geometry the average front steering angle

16

www.manaraa.com

Figure 2.2: 1/5th vehicle front steering angle measurement set up.

can be calculated as [22][20],

δf = (δo + δi)/2 (2.19)

Where, δo is outer front wheel steering angle and δi is inner front wheel steering angle.
From Equation.2.17, it is clear that the yaw information from vehicle kinematics can
be obtained by measuring the vehicle speed and steering angle, and it is explained with
appropriate experimental setup in the following section. Fig.2.2 shows the steering
angle measurement using potentiometer, which is connected to the steering link of
the vehicle though a 3D printed gear system. The on-board embedded system reads
potentiometer position and makes ADC conversions to calibrate the steering system.
Here, steering system is calibrated with 0 Volts being the left most steering angle and
3.3-Volts being the right most steering angle position. However, the current vehicle
has total RWA range of ± 27.25◦ with -ve angle being left turn and vice versa. From
the calibration analysis, it is found that the ratio between steering wheel angle to
road wheel angle as,

δf = 0.0253×RWA+ 0.5 (2.20)

In addition, the noise in RWA is estimated as ± 0.5 deg for the total range of ± 27.25◦.
On the other hand, vehicle velocity is measured using a Metallic-Object Proximity
Switch sensor and from the sensor measurement analysis it is found that the sensor
can able to measure speed from 0.5-5 m/sec with an accuracy of ±0.01 m/sec. Due to
its low variance/noise in vehicle speed and RWAmeasurements, the vehicle kinematics
restricts yaw rate estimations to within ± 1.25 deg/sec variance. Further validation
of vehicle kinematics yaw calculations is given in experimental setup section. By
knowing the yaw dynamics at current step k, from vehicle kinematics and iteration

17

www.manaraa.com

Figure 2.3: Modified vehicle kinematics EKF fusion algorithm.

time dt provides yaw estimation at k+1 step as,

Ψk+1 = Ψk + Ψ̇k(dt) (2.21)

The key point to note here is that, the vehicle kinematics provide yaw estimations
based on Cartesian coordinate system, whereas the EKF filter works based on global
coordinate system. Due to this, in the present work, yaw measured in global co-
ordinates by IMU is converted into Cartesian coordinates (CCW) and thus maintain
consistency between vehicle kinematics calculations and IMU heading values for the
fusion algorithm. Therefore, all heading results interpretation is made based on Carte-
sian co-ordinates, where East direction starts from zero degrees and rotates in CCW
direction for 360 degrees. Yaw estimation from the above simple first order equation.
2.21 can be mapped into magnetic x and y fields by applying a simple trigonometric
rule,

mx = cos(Ψk+1) (2.22)

my = sin(Ψk+1) (2.23)

The equations 2.22-2.23 assume that the magnetometer is calibrated and its norm is
a unit circle on horizontal plane. The updated magnetometer values from equations
2.22-2.23 would replace the erroneous magnetometer readings, while the system is
subjected to external magnetic disturbance is shown in Fig.2.3. The above model
shows robust performance not only during straight path but also in turning paths.

18

www.manaraa.com

2.3 Experimental setup

Experiments were conducted at APSRC, Michigan Technological University and the
vehicle used for the tests is 1/5th scale buggy type truck. The vehicle has been
equipped with the UM7 inertial measurement unit, potentiometer along with 3-D
printed gear to measure the steering angle, speed senor and on-board embedded sys-
tem for acquiring data. A fixed ratio of 12.6 has been applied between center axle
shaft to wheel speeds. The data logged at a rate of 80 Hz from each sensor and 1.2
GHz ARM cortex Embedded processor has been used for logging and processing the
data.
The filter initial estimates were taken from UM7 gyro, accelerometer and magne-
tometer sensor outputs. All three sensors are calibrated before doing the tests and
assumed that soft and hard iron effects on magnetometer sensor is eliminated [5, 16].
The calibration and validation procedure for accelerometer and vehicle kinematics is
as follows:

2.3.1 Accelerometer calibration

Assuming that, the sensor axes are aligned with the Body axes, the relationship
between accelerometer measurements from sensor frame to body frame can be written
as,

as = Kaab + ba (2.24)

Where, as is acceleration measurements in sensor frame. The bias and scale factor
in each axis made the above model to have 6 unknowns. These 6 unknowns can
be calculated by placing IMU in vertical position in their corresponding axes. i.e,
for calculating bias and scale factor in x axis, the IMU x-axis would be placed in
vertical direction. This way, the accelerometer x component measures known gravity
component and provides two equations for x-component unknowns. Similarly, by
including y and z axis components it formulates six equations and with 6 unknowns
and therefore the scaling factor and bias matrix for the given UM7 accelerometer is
estimated as,

ba =
[
58.85 −38.25 0.012

]T

19

www.manaraa.com

Figure 2.4: Heading comparison between IMU sensor measurements and
vehicle kinematics calculations.

Scaling matrix or coefficient,

Ka =

⎡
⎣1 0 0
0 1 0
0 0 4107.0

⎤
⎦

In the present work, Gyro sensor bias terms are included in the state vectors of
Extended Kalman Filter. Therefore, the filter would compensate gyro bias for each
iteration and the calibration of gyro for bias is not required. The calibration of
Magnetometer is briefly discussed in the results section.

2.3.2 Vehicle kinematics validation

It is important to validate the vehicle kinematics calculations according to the IMU
sensor measurements such that the fusion algorithm provide accurate heading esti-
mates. To confirm the kinematics calculations for accuracy, a predefined circular
path test condition has been made. The circular path is made with 5-meter radius
and vehicle is travelled three times along this path without any magnetic effects and
thus conventional EKF estimates from IMU can be considered reference values for
the heading comparison.
Fig. 2.4 shows the comparison between heading estimates from IMU EKF filter and
heading calculations from vehicle kinematics for three circles in a test. The error
between IMU heading and vehicle kinematics heading at the end of three-circle test
is within ±1.5◦ and therefore the heading estimation from vehicle kinematics can be
fused with IMU when it is affected by external magnetic disturbances. Further the
true distance measured for the circles is 94.2m and the distance calculations from the

20

www.manaraa.com

Figure 2.5: Road wheel angle measurements for circular path test.

Figure 2.6: Vehicle speed measurements during circular path test.

integration of measured vehicle speed obtained is 93.8 m. In addition, a simple low
pass filter has been applied to the velocity and steering measurements for rejecting
outliers in the data. The processed Road wheel angle and vehicle speed data used for
the vehicle kinematics calculations in circle test are provided in Figures 2.5 and 2.6.

2.4 Results and Discussion

As mentioned, all the tests were made after calibrating three sensors in IMU including
accelerometer, gyro and magnetometer. The Norm of magnetic field is calculated as
follows

Norm of magnetic field, ζ =
√
m2
x +m2

y

21

www.manaraa.com

The IMU orientation values are prone to magnetic errors as the magnetometer is
sensitive to ferrous and permanent magnets. In the present paperwork, the magnetic
field is mainly divided into two main categories namely temporary and permanent
deformation states based on the Norm of magnetic field. If the Norm of magnetic field
exceeds certain limit for certain time period, the magnetometer sensor experiences
permeant deformation in its readings and needs recalibration to estimate the accurate
vehicle orientation. However, studying different types of magnets and controlling its
magnetic field direction is out of this scope of work. In the present work, the Norm
mag field ζ, provide limitations for temporary deformation and adaptive weights for
vehicle kinematics data in EKF fusion algorithm. Further, yaw rate and rate of
change of Mag norm is also considered as a supplemental information for vehicle
kinematics fusion algorithm. The criteria to fuse vehicle kinematics information with
conventional EKF filter is explained in straight-line static test section.
The current study has conducted mainly two types of tests namely static and on-road
tests. The static tests are for simulating the straight road conditions while keeping the
vehicle stationary and all the other functionalities are in working condition. This can
simply be achieved by keeping the vehicle wheels above ground level and observing
the IMU, steering and speed sensor values. These tests are useful for estimating
the calibration parameters for gyro, accelerometer and magnetometer sensors and
studying the effect of temporary and permanent magnetic field on magnetometer.
Further these tests provide initial guess values for EKF filter algorithm including q0
and b0 using magnetometer, accelerometer and gyro outputs. The initial values for
parameter P0 have been considered as 100 × I7×7 and Q, Ra and Rm matrices are
calculated from q0 and P0 [6].

2.4.1 Static tests

As mentioned, these tests are conducted by lifting the wheels off from the ground
and keeping the vehicle heading towards known direction with true value of yaw is
163◦ in Cartesian coordinates. The test has been made for about 175 sec period
and the temporary magnetic field is applied during 50-110 sec time duration. During
this period, the Norm magnetic field is deviated about 0.8 Mag fields from unit
norm circle is shown in Fig.2.8. This deviation in Norm magnetic field indicates the
external magnetic field or disturbance on IMU and thus, it clearly affects the vehicle
yaw estimations is shown in Fig.2.7. However, the sensor reinitializes to its original
state and measures correct yaw values, once the external magnetic field is removed.
From Fig.2.7 it can be seen that, when the system undergoes external magnetic

disturbance (between 50-115 sec duration), the kinematics-fusion algorithm keeps
the yaw estimations unchanged as the change in steering wheel angle is about zero
degrees. However, this fusion of vehicle kinematics is made with the interpretation

22

www.manaraa.com

Figure 2.7: Comparison of heading estimates with and without kinematics
fusion for static test condition.

Figure 2.8: Magnetic strength comparison for static test condition.

of different sensors data, which is explained in criteria to apply kinematics fusion
algorithm section.

2.4.1.1 Criteria to apply Kinematic fusion algorithm

The application of kinematics fusion algorithm for heading estimates not only depends
on Norm of mag field but also on other parameters including rate of change of norm
mag field, accumulation of norm mag field and rate of change of heading or yaw rate.
From Fig.2.8, the primary criteria to apply kinematic fusion algorithm is to check
Norm mag field is within the range of ±0.05 from unit Norm circle. Therefore, any
Norm Mag field data outside this range initiates the fusion of vehicle kinematics in
the algorithm. From Fig.2.9, it can be seen that, the rate of change of Norm of

23

www.manaraa.com

Figure 2.9: Rate of change of Norm of mag field for static test condition.

Figure 2.10: Norm mag field sum for static test condition.

mag field only changes when there is abnormal change in the magnetic field. This
parameter clearly indicates the effect of external magnetic disturbance and thus avoid
sensor estimates in the adaptive kinematics fusion algorithm. This parameter sets the
criteria to accept sensor estimates only when the rate of change of Norm mag fields
are within ± 0.03.
From Fig.2.10, The Norm mag field Sum is calculated by integrating the previous

40 samples of Norm Mag field rate values and thus making sure that, the sensor
re-initialization has been made after the initial disturbance from external field. This
effect can be seen in Fig.2.23, where the IMU is still under mag-affected zone while
Norm mag field passes through acceptable range. This condition indicates robustness
to different directions of external magnetic field on IMU and thus providing stable
estimates for vehicle orientation. This parameter makes criteria to accept sensor
estimates only when the sum is below 0.5. The final criteria to check the disturbance
of sensor estimates for heading is to have stable and smooth yaw rate values. From the
vehicle steering mechanism perspective, it is known that the vehicle has constraints for
steering rate and thus impose a check point for abrupt changes from sensor yaw rate

24

www.manaraa.com

Figure 2.11: Yaw rate variation for static test condition.

estimates. This parameter makes criteria to accept sensor estimates when the absolute
yaw rate is within 20◦/sec is shown in Fig.2.11. From the above criteria analysis,
the fusion algorithm rejects sensor measurements whenever there is a possibility of
external magnetic disturbance and waits for the sensor to stabilize its measurements
after passing external disturbance region. Therefore, this provides smooth transition
between Mag-affected regions to Mag-free region with no abrupt changes in steering
command for autonomous navigation.
When the applied external magnetic field deviates about 3 units from unit Norm
circle for about 50 secs, the magnetometer undergoes permanent deformation and it
requires recalibration for the given location [5][21]. The next section provides brief
explanation on magnetometer recalibration for the given location.

2.4.1.2 Recalibration studies

Fig.2.12, shows the amount of magnetic deviation in magnetometer measurements
from unit norm circle. This clearly shows the need for magnetometer recalibration
and therefore magnetometer has been re-calibrated using Kok [5] algorithm. To ex-
plain briefly on calibration procedure, the IMU has been rotated arbitrarily to obtain
3-dimensional mag vectors for at least 700 sec [16]. This procedure ensures acquir-
ing sufficient mag values from X,Y and Z coordinates and calibration algorithm take
these values for finding magnetic errors in each axis through A(− 1) and bm matrices
to transform deviated Norm field onto unit Norm sphere is shown in Fig.2.13.
Here, A(−1) accounts for misalignment, scaling and soft-iron errors, whereas bm ac-
counts for bias and hard-iron errors [5]. The final magnetometer calibration model

25

www.manaraa.com

Figure 2.12: Norm Magnetic field before the calibration.

can be written as follows,

Bact = A−1(Bmeas − bm)

Where, Bact is actual magnetic field and Bmeas is erroneous measurements from
magnetometer. The matrices A(−1) and bm for the present UM7 magnetometer is
calculated as,

bm =
[
27 4 −35

]T

A−1 =

⎡
⎣0.01386984 −0.0002846658 −4.56969E − 05

0 −0.01405845 −8.17955E − 06
0 0 0.01322711

⎤
⎦

This way calibration of magnetometer has been done and Fig.2.13 shows the Norm
Mag field after recalibration of magnetometer for the given location.

26

www.manaraa.com

Figure 2.13: Norm Magnetic field after the calibration.

2.4.2 On-Road Tests

2.4.2.1 Test conditions

The vehicle tests have been conducted for various turning conditions including straight
road, 90 deg turn and 180 deg turns. The 180 deg turn mimic the round-about road
condition and 90 deg turn mimic the left turn respectively is shown in Fig.2.14.
Appropriate road turning radius have been made to navigate the vehicle in smooth
manner along turnings and reduce error in test to test variation data. In the present
study, each test condition is done twice to obtain Mag-free data from one test and
Mag-affected data from another test. Further each Mag-free and Mag-affected test
condition is repeated four times. The details on total test condition matrix and cor-
responding Mag-affected zones is given in Table.A.2, Appendix.A.5. All tests are
conducted in open environment and magnetic disturbance from ferrous material or
any other source has been avoided. Various static tests have been conducted to study
the effect of specific materials that can disturb IMU magnetometer in the constrained
magnetic field window of 1±0.8 Norm of mag field. These specific materials are used
for disturbing the IMU and applied in a strategic manner during the tests. The dots
in Fig.2.14 indicates corresponding Mag-test condition check points for applying ex-
ternal magnetic field disturbance on IMU. For instance, while doing 90 deg east to
north Mag-tests external mag field is applied at point N2 (7 m from starting point)
and released at point N1 (8 m from end point) with total mag-affected zone distance

27

www.manaraa.com

East

N
or

th

West

7m
2m

14m 13m

3m

9m

ø 14m

ø 10m
ø 6m

3m 2m
S1

C1

S2

3m 2m 2m 2m

8m

2m
C2 C3

C4

N2

22m
C5 C6

3m

N1

N3

CCC

Figure 2.14: Vehicle path for different on-road test conditions.

Figure 2.15: Change in Norm of Mag field, when vehicle passes through
magnetic prone region.

of about 14m. This way, the effect of external magnetic field for each turning path
is made and developed kinematic fusion algorithm. More details on typical range of
external magnetic disturbance from environment is explained in next section. In all
of the test conditions, vehicle speed is controlled by the controller and steering has
been controlled manually.
In general, it is important to know the magnitude of external magnetic field or dis-
turbance in order to apply appropriate filter conditions in vehicle kinematics fusion
algorithm. For this reason, we have run the vehicle in a straight line near magnetic
prone region, where the amount of external magnetic field is high and would mimic
typical outside on-road magnetic disturbances.
Fig.2.15 and 2.16 shows the typical external magnetic field range and change in head-
ing due to this external disturbance. From Fig.2.16, it can be observed that, when
vehicle is in mag-free zone (0-20 sec period) its heading is nearly constant and Norm

28

www.manaraa.com

Figure 2.16: Change in heading, when vehicle passes through magnetic
prone region.

mag filed is within the range of ±0.05 from Unit Norm value, and as the vehicle
approaches near magnetic prone region at about 20th second, the heading values de-
viates from its true value and Mag norm fields varies suddenly and oscillates about
Unit Norm field. Though the results show Norm Mag field range is between 1± 0.4,
the current study increased this limit to 1±0.8 to encapsulate stronger and noisy
magnetic fields and thus smooth variation in kinematics-fusion algorithm estimates.
Therefore, in the present work all test conditions were applied within 1± 0.8 unit
norm external mag field to mimic real world road conditions. Further, previous stud-
ies [21][19] constrained the fusion of vehicle kinematics information to straight line
navigation. However, the current study explored the fusion of vehicle kinematics for
various turning paths including 90 deg turns, round-about path and circle path.

2.4.3 Studies on Straight line tests

A straight-line path has been made perpendicular to the benchmark building wall.
The true or reference heading has been confirmed with digital compass and the error
in true heading due to road slope and vehicle navigation is ± 2.5 deg. However, the
true or reference heading for a given test condition is calculated by averaging the 4
mag free test conditions data sets is shown in Fig.2.17.
As mentioned, the three sensors in IMU are calibrated before doing the tests. The
tests are conducted in a fashion that, first 4 tests are conducted without any magnetic
disturbances on IMU and remaining 4 tests are conducted with external magnetic field
disturbance for a fixed duration. Therefore, in mag-affected tests external magnetic
field is applied only for a specified distance to observe the effect of magnetic distur-
bance and recovery of IMU after removing the external magnetic field in the same

29

www.manaraa.com

Figure 2.17: Reference heading for the Straight-line navigation test.

test.
There are mainly two tests conducted in straight line tests namely towards-West and
towards-East direction. For each direction, the results show that, fusion of vehicle
kinematics improves the accuracy in heading estimations and alleviates the effect of
external magnetic field is given in Table 2.1. Most of analysis plots are made with
respect to the distance travelled by the vehicle. However, data acquisition for each
test occurs at different measurement rate and comparison between test cases made
using moving mean average in the given interval of time. i.e., the data in every 0.45
sec interval of time period has been averaged to make one point and compare it to the
next test case. This way every test case maintains data with 0.45 sec interval period.
Fig.2.17 provide reference or true heading for the present straight line to west test
condition by averaging the four mag-free test data sets. This reference curve acts as
true path for the mag-affected tests and make further analysis on error estimations.
In addition, the test to test variation error for each test is estimated by calculating
average of RMS errors of four mag-free heading data sets with respect to reference
heading is given in Table.2.1. For straight line towards-West test, the test to test
variation is estimated as 0.08◦ From Fig.2.18 and 2.19, it can be observed that, for
the given location, Norm Mag field range of ± 0.05 provides no error in the heading
measurement and as the magnetic norm field deviates from its calibration circle, the
heading value departs from the true value. Further, the decrease in magnetic field
from its unit circle has more effect on heading disturbance compared to increase in
magnetic field. Fig.2.20, shows magnitude of least square heading error deviation
along the path and as expected, the deviation is maximum during the mag distur-
bance zone. The kinematic fusion estimates show slight deviation from the true data
and thus falls near zero line. The improvements in kinematics fusion estimates com-
pared to the conventional algorithm estimates can be quantified using RMS error,
which reduces from 3.4to0.5◦ without considering the test to test variation error of
0.08° is shown in Table. 2.1. This confirms kinematics fusion algorithm alleviate the
effect of magnetic disturbance and thus provide stable heading estimates to avoid

30

www.manaraa.com

Figure 2.18: Comparison of vehicle heading with and without kinematics
fusion algorithm for straight line test condition.

Figure 2.19: Comparison in Norm of Mag field for straight line towards
West test condition.

sudden changes in the autonomous navigation.

2.4.4 90 Deg turn road path analysis

The main focus of this paper is to estimate vehicle heading during turning paths while
it is affected by the temporary magnetic field disturbance. This can be achieved by
taking the advantage of vehicle kinematics and thus it is only applicable to ground
vehicular applications. Further, vehicle speed during tests is below 5 m/s and thus
vehicle lateral dynamics can be ignored [5].
In this test, the vehicle travels from East to North direction by taking 90 deg left
turn with the radius of 3m and the total distance travelled by vehicle is about 27

31

www.manaraa.com

Figure 2.20: Least square error change along straight line towards West
path.

meters. The initial tests have been made without applying the magnetic field to get
the average true heading of the path. However, the mag tests are conducted similar
to the previous tests. i.e, the external magnetic field is applied only for the specified
distance to observe the heading recovery after removing the external magnetic field.
In this test, the magnetic field is applied, when the vehicle is about to take turn and
removed when it is completed the turn, is given in Table.A.2, Appendix.A.5. This
can be clearly observed in the Fig.2.22 and as expected, when the external magnetic
field is removed from the vehicle, the IMU heading estimations follows true values.
Therefore, the rejection of external disturbances for the given range can be easily
avoided by fusing the vehicle kinematics information. The similar trends have been
observed, when the vehicle is travelling in reverse direction in the same path. For
brevity, the plots for all test conditions have not been shown in the paper. However,
the RMS errors and test to test variation error for each test condition is given in
Table.2.1.
Fig.2.21 provide reference curve for 90 deg east to north test condition by averaging

the four similar mag-free test data sets and it is used for analyzing the mag-affected
heading data.
From Fig.2.22 and 2.23 it is seen that, though the Norm of mag field cross the mag-
free zone, the kinematic fusion estimates follow smooth transition and sudden changes
have been eliminated. This shows the robustness of the fusion algorithm and ability
to reject the mag-affected data.
Fig.2.24 shows the least square error deviation from true values along the path.

While the vehicle is in Mag zone (from 7-22 m duration), the conventional EKF
estimates suffer with magnetic disturbance and shows large deviations in heading
estimates. However, the kinematics-fusion algorithm rejects error prone data from
magnetometer and minimizes the deviations in heading estimates. This is quantified
in Table.2.1, where RMS-errors for the given test condition improved from 6.0to1.9◦

without considering the test to test variation error of 0.7◦.

32

www.manaraa.com

Figure 2.21: Reference heading for the 90 deg east to north navigation
test.

Figure 2.22: Comparison of vehicle heading with and without kinematics
fusion algorithm for 90 deg east to north test condition.

2.4.5 Round-about turn test path Analysis

In these tests, the vehicle travels in straight line in the West direction and takes 180
deg round-about turn with 5m circle radius in the middle of the test path as shown
in Fig.2.14. Further, the mag field is applied when the vehicle is at middle of the
round-about circle and removed when the vehicle exit round-about circle is detailed
in Appendix.A.5. in Table.A.2. This way, the performance of kinematics fusion
algorithm and ability to differentiate mag affected data and avoid deviating from
true path while vehicle is in typical round-about turns is studied. Fig.2.25 provides
the reference or true heading for the given test condition by averaging the four mag
free test data sets. This reference curve is used for making the error analysis with
mag-affected tests. Further, the test to test variation error is provided in Table.2.1.

33

www.manaraa.com

Figure 2.23: Comparison in Norm of Mag field for 90 deg east to north
test condition.

Figure 2.24: Least square error change along 90 deg east to north test
path.

The comparison between reference heading (Fig.2.25) and mag effected heading is
given in Fig.2.26. Form Fig.2.26 and 2.27, at the distance of about 14 m from starting
point, it can be seen that the heading measurements deviates from its true values as
the Norm of mag field deviates from its unit norm mag field. Though the variation
in Norm mag field is varying considerably during Mag-zone, the Kinematics fusion
algorithm relies on other parameters including yaw rate, rate of change of Norm
mag field and Norm mag field sum to remove erroneous heading and make a smooth
transition between Mag to Mag-free zone. Further, from Fig.2.28, the maximum least
square error along the path can be observed when the Norm mag field is varying in
abrupt manner. During this period, the kinematics fusion algorithm is robust and
able to reject the mag affected data to keep the vehicle along the true path. This
performance is quantified in terms of RMS error in heading estimations along the
path, which is reduced from 1.9to0.3◦ without considering the test to test variation
error of 0.16◦ is given in Table. 2.1.

34

www.manaraa.com

Figure 2.25: Reference heading for the 180 deg towards West test condi-
tion.

Figure 2.26: Comparison of vehicle heading with and without kinematics
fusion algorithm for 180 deg towards West test condition.

2.4.6 Circle tests

The circular test has been made with a predefined path of 5 m circle radius and ve-
hicle completes 3 circles in one test condition. As mentioned, mag tests are made in
a strategic manner and here external magnetic field is applied only during 2nd circle
maneuver. During, this Mag-zone (between 75-130 sec period), the sudden surge of
external magnetic field causes the heading estimates to diverge from its true value as
observed in Fig.2.29 and 2.30. There is a small difference shown in Figure 30 between
reference heading and kinematic fusion heading in the mag affected zone due to the
test to test variation and vehicle handling during the test. The total error in head-
ing estimations from reference values has been quantified using RMS-errors and the
kinematics-fusion algorithm reduces this error from 3.9to0.9◦ as given in Table.2.1.

35

www.manaraa.com

Figure 2.27: Comparison of Norm of Mag field for 180 deg towards West
test condition.

Figure 2.28: Least square error change along 180 deg towards West test
path.

The true error will be lower as the kinematics-fusion includes test-test variation.
From the results and discussion section, it can be clearly seen that, the vehicle kine-
matics fusion algorithm improved heading estimates while IMU is affected by external
magnetic field disturbances. Further, RMS errors for each test condition quantifies
the amount of improvement in heading estimates by using the kinematic fusion algo-
rithm.

36

www.manaraa.com

Figure 2.29: Comparison of vehicle heading with and without kinematics
fusion algorithm for circular test condition.

Figure 2.30: Comparison in Norm of Mag field for circular test condition.

2.4.6.1 Error Analysis

In this paper, the least square errors and RMS errors have been defined as follows:

Least Sq. Error =
(Hdngref −Hdng)2

Hdngrefmax

RMS Errors =

√∑n

i=1(Hdngref i −Hdngi)2

n

Here, n indicates number of samples in the test data. The RMS error results for each
test condition has been given in Table.2.1. The RMS error for the results with the
kinematics fusion algorithm includes test to test variation but still it is seen that that
on average the RMS error is reduced by more than 1.5◦ over the maneuvers.

37

www.manaraa.com

Table 2.1

RMS errors in heading (in ◦) for different test conditions

Test Condition Test-Test
Variation
RMS error

Without
Kinemat-
ics Fusion
Algorithm

With
Kinemat-
ics Fusion
Algorithm

St. line towards West 0.08 3.4 0.5
St. line towards East 0.04 1.3 0.3
90 Deg turn West to North 0.12 1.1 0.4
90 Deg turn South to East 0.2 2.3 0.6
90 Deg turn East to North 0.7 6.0 1.9
90 Deg turn South to West 0.12 1.5 0.4
5m circle roundabout towards West 0.16 1.9 0.3
5m circle roundabout towards East 0.8 1.7 0.9
7m circle roundabout towards West 0.2 1.5 0.8
7m circle roundabout towards West 0.9 2.8 1.8
circle test in clock-wise direction 1.05 3.9 0.9

38

www.manaraa.com

Chapter 3

Non linear MPC algorithm
development for unstructured
environment with moving and
stationary obstacle avoidance

3.1 Introduction

In recent years, the need for autonomous navigation has increased and world is tend-
ing towards making commercial and military vehicles into autonomous vehicles. This
would be critical in off-road military utility applications, where the needy objects
can be transported without human inference. However, in order to complete this
task vehicle need to meet safety constraints at all times by accurately estimating the
surrounding information and navigating through unexpected moving and stationary
obstacles. This may be achievable in small robot on-road applications, where the
priori information of obstacles are known [23]. However the recent advancement in
embedded systems and performance in handling lager sets of information created an
opportunity to develop autonomous navigation in passenger and larger vehicles too.
Most of these vehicles autonomous navigation is still under critical review and it is
especially true in case of high speed off-road application, where the priori information
of obstacles and steep regions are unknown. Therefore, handling high speed off road
conditions, which encounters sudden obstacles and steep regions requires thorough
analysis on handling vehicle dynamics and thus making safe navigation. As of now,
there exist some of the algorithms that can utilize the vehicle dynamics to navigate

39

www.manaraa.com

the vehicle safely, without collisions and yet maintain the high speed [24], [25]. How-
ever, these algorithms do not consider road grade and moving obstacles and requires
potential research work to be made.
There are many obstacle avoidance algorithms available in the literature and they
can be mainly divided into four categories including 1). Virtual potential and
navigation function based methods [26] [27], 2). Graph-search based methods
[23], [28], 3). Meta-heuristic-based methods [29] and 4). Optimization based methods
[30, 31, 32, 33]. Each mentioned method might have served for the intended applica-
tion. However, for the present off-road high speed application, the first two methods
would nearly failed to handle dynamical safety requirements. However, the third
method often suffers with computational burden and does not produce smooth com-
mands for the navigation. However, the Optimization-based methods rely on rigorous
mathematical formulations and offer systematic handling of vehicle dynamic safety
constraints to ensure vehicle safety and yet generate smooth trajectories. There-
fore, among the mentioned methods, optimization methods would most suits for the
present application. The autonomous navigation can mainly be performed in two
ways, firstly using preloaded map with offline planning and tracking the path using
online feedback controller. Secondly, the optimum path and tracking would be made
online by using current vehicle states and surrounding information. The later method
be handled effectively by using Model predictive control (MPC) [34], [35] and best
suits for the present application. In MPC, the optimal control problem (OCP) would
be formulated through systematic mathematical representations to mimic future con-
ditions and solved repeatedly over a finite control horizon. However, the controller
would only consider initial part of the optimal solution for the implementation and
thus recedes itself into optimum zone for the next iteration. Due to its ability to look
into future and make decisions mimics human behavior in real time scenario. How-
ever, thorough analysis in developing vehicle model for state estimations and careful
consideration of surrounding information needs to be made.
Previous studies have been made and succeeded by employing the MPC tech-
nique for obstacle avoidance in Autonomous ground vehicles (AGV) including
[36, 37, 38, 39, 40, 41]. However, most of these studies have been restricted to on-road
applications, where the surrounding information is structured in terms of road lanes,
smooth and steady road grade, rules to follow traffic moments and no moving objects
into your path. On the other hand, the present work considers developing AGVs in
off-road unstructured environment with non-smooth road grades, including military
applications. In this context, the ‘unstructured environment’ represents the path with
no lanes, bumpy regions and no rules to follow traffic conditions. The objective of
the present AGV is to navigate from its initial position to target position safely and
as soon as possible. Therefore, by meeting the safety constraints, vehicle can travel
at its maximum allowable speed and eliminate the constant speed condition. This
reduces unnecessary deceleration in the navigation and reaches the target as fast as

40

www.manaraa.com

possible. While the vehicle is in travel, there exist both moving and stationary ob-
stacles, whose position, speed, angle of shoot is not known a priori. However, these
obstacles information can be estimated when they come into the range of planar light
detection and ranging (LIDAR) sensors. In the present study, multiple LIDAR sen-
sors are considered on the vehicle with different mounting positions to detect both
stationary and moving obstacles in wide range view and fuse them together to create
collision free path. Here, the obstacle view would still not cover backend of the vehicle
and more details are explained in LIDAR process section. It is also assumed that,
the limited range of road grade information is known from the map and it covers the
vehicle front region as explained in LIDAR process.
The present work can mainly be distinguished in three ways from previous research
studies and motivated to formulate a modified MPC problem. Firstly, handling of
stationary obstacles with no-prior information using ‘Box slope search’ method. Un-
like the on-road applications, where the target path is defined and can be perturbed
for a brief period to avoid structured obstacles, in the present work a new algorithm
is developed to process the stationary obstacle states in the vehicle view region and
thus varying the target heading according to the surrounding conditions. Therefore,
the target path is part of OCP formulation and can be deviated and optimized based
on the obstacle position information. This formulation requires thorough analysis of
each desired obstacle states with respect to vehicle states and making sure that the
search logic is not cumbersome and can be easily implemented in real time. However,
this can be achieved by dividing the vehicle view region into sub sections and avoid-
ing the unnecessary calculations for the obstacles that are not obstructing the vehicle
path and yet falls under the vehicle view region.
Secondly, the consideration of vehicle’s dynamical safety constraints, while the vehi-
cle is in high speed unstructured environment with no-prior information of obstacles.
Here, the assumption of flat surface in unstructured environment is not a valid as-
sumption and thus road grade information is considered in the safety constraint for-
mulation. Prior algorithms considered vehicle dynamical safety constraints through
excessive side slip including passenger cars on wet road or race cars [32]. However,
these constraints are not adequate for the off-road heavy duty vehicles including mil-
itary vehicles. These vehicles have high center of gravity (CoG) and it is critical to
consider wheel lift-off condition as major dynamical constraint than wheel sideslip.
Prior work has been made with wheel lift-off constraint to handle vehicle dynamical
constraint in unstructured environment [25]. However, the study considered un-
structured environment is flat thus omitted the effect of road grade on wheel lift off
constraint. On the otherhand, due to road grade considerable load transfer in the
vehicle longitudinal direction occurs and causes a shift in the vehicle CoG location.
Therefore, it is critical to consider the effect of road grade in vehicle safety constraints
to ensure all four wheels are on the ground.
Third novelty is related to the handling of moving obstacles and fusing its state es-
timations in the MPC formulation to avoid collision in real time. i.e., the algorithm

41

www.manaraa.com

not only detects the moving obstacles but also includes them as state vectors in MPC
system dynamics model to predict its states into the future and create collision free
path. Several algorithms have been developed to detect moving obstacles [42],[43]
in structured and small robot applications. Further, these studies are constrained to
kinematic models and decoupled from moving obstacle states. [44] developed moving
obstacle avoidance using forbidden velocity map within the defined dynamic window.
However, the collision free path is not guaranteed and the adequate safety constraints
and fusion of obstacle predictions with vehicle states may not be obtained.
Prior work has been made to avoid stationary obstacles in an unstructured environ-
ment using non-linear MPC algorithm [45], [46]. However, these studies considered
constant longitudinal speed in the problem formulation and constrained the mobility
performance. Further, the constant speed algorithm fails when it encounters big-
ger obstacles in the path and thus limit its performance to smaller obstacles. [25]
extended the previous studies that consider optimal longitudinal speed and dynam-
ical wheel-lift off constraints. The study also considered varying prediction horizon
to achieve constant distance prediction. However, the study does not consider road
grade and moving obstacles into the problem formulation. The omission of road grade
in the study restricted wheel-lift off constraint to rear wheels alone. Further, it pro-
cesses the LIDAR information at each iteration for the whole vehicle view region. It
consumes considerable time and power for processing the LIDAR information and
may not be feasible for the real time implementation.
The present work developed a new non-linear MPC problem formulation, that con-
sider both stationary and moving obstacles with high speed navigation and yet meet-
ing the vehicle dynamic safety constraints in an unstructured environment. The
following major points can be highlighted from the present work
1) A new method called ABD-JDN algorithm has been developed for processing LI-
DAR information for stationary obstacles in the vehicle view region. This method
divides the vehicle view region into sub sections and process each sub region in a
strategic manner to find collision free path. Once the algorithm determines its path,
it omits other sections for the obstacle search and thus avoid unnecessary processing
in vehicle view region.
2) The inclusion of road grade into the dynamical safety constraints has been made.
Therefore, the no-wheel lift-off constraints have been extended to all four wheels, as
the road grade creates substantial longitudinal load transfer based on the direction
of road grade. Further, the constraints have been implemented through both hard
and soft constraints by using vehicle dynamics equations. Hard constraints are made,
such that the vertical load on each wheel should be more than a specified minimum
threshold load. In the present study, the minimum threshold load is assumed to be
1000 N. On the otherhand, the soft constraints are imposed to provide a smooth
approach to the threshold load.
3) A new method is developed to process the moving obstacles that would estimate
moving obstacle states including speed, position and angle of shoot. Based on the

42

www.manaraa.com

angle of shoot, the algorithm decides, whether to consider the object as danger-
ous to do further processing. The algorithm fuses moving obstacle information into
MPC problem formulation. A new MPC problem formulation has been developed by
incorporating the moving obstacle states while keeping all previous conditions and
constraints unchanged.
The present study considered vehicle parameters that mimic large, high speed mil-
itary truck with significant vehicle dynamics and the acceleration,speed limits are
taken from the previous studies made by [25]. However, as mentioned earlier the
vehicle dynamical constraint is not restricted to rear wheels alone due to road grade
consideration and all for wheels should meet the vehicle dynamic safety requirement.
Further, the present work uses MPC frame work to formulate and solve the provided
Optimal Control Problem (OCP).
The following assumptions have been made while developing the algorithm and these
are explained in detail in the later Discussion section.
1. LIDAR sensor can detect all obstacles within the given range
2. The road grade is obtained through terrain maps and it is accurate for the given
field range
3. Vehicle parameters are constant
4. Vehicle state estimations are free from noise
5. All moving obstacles can be detected and processed in the given moving obstacle
LIDAR view region.
The MPC provide optimal solution for each prediction step in one iteration and in
the present study, optimality refers optimal solution at each prediction step is based
on the current information availability and not based on the information availability
at all corresponding prediction steps. Further, the terms included in OCP makes it
non-convex in nature and the global minima is not guaranteed. Therefore, in the
present context, the optimal solution including optimal trajectory, optimal control
inputs refers the local optimal solution calculated by the OCP solver.

3.1.1 Organization of work

The present work deals with stationary and moving obstacles along with road grade
inclusion in the problem formulation. The rest of the paper is organised as follows;
Section II provide methodology for stationary obstacles, in which the schematic of
AGV and mathematical formulation of MPC algorithm for stationary obstacles along
with road grade is furnished. Section III presents moving obstacle methodology,
which incorporates mathematical formulation of moving obstacle states to existing
stationary obstacle MPC formulation. Section IV provide the problem formulation
on CasADi platform. Section V provide the simulation results for both moving and

43

www.manaraa.com

Optimal Control Problem
(NMPC controller)

Estimates:

Obstacle State Estimates

Low level speed
controller

Reference speed profile

Steering commands (Target path)

Powertrain Efficiency profile

Vehicle Dynamic model

T
hr

ot
tle

 a
nd

 b
ra

ki
ng

 c
om

m
an

ds

Terrain Map
Modules

LIDAR
Modules

Terrain Map
Modules

LIDAR
Modules

Hardware Unit

States Estimates

Vehicle Dynamic model

Software Unit: State Estimator

LIDAR
Processing Unit

Physically connected

w level speed
t ll

t path)

T
hr

ot
tle

 a
nd

 b
ra

ki
ngggg

 c
om

m
an

ds

nnected

Task/Target
information
TTT
iin1. Target

location(,)
2. Speed @ Target location

Powertrain Efficiency profile

Sensor Unit
Elevation Map

processor

R
oa

d
G

ra
de

in
di

ce
s

e Estimates

Moving
Obstacles
Process

g U

Moving

UnitUnit
Stationary
Obstacles
Process

Proc
Gaussian

noise model

Obstacle filter
estimates

Figure 3.1: Schematic of obstacle-grade avoidance layout using MPC al-
gorithm.

stationary obstacle formulations and finally section VI makes the discussion on as-
sumptions made in the present study and possible future work.

3.2 Methodology for stationary obstacles

The Fig. 3.1 shows the schematic of Non-linear MPC algorithm structure to avoid ob-
stacles and steep road grade regions for AGV off-road application. The mathematical
formulation of stationary obstacle avoidance serve as basis for moving obstacle avoid-
ance by incorporating additional states and constraints in it. Therefore, the detailed
explanation of cost function and constraints for the stationary obstacle avoidance is
provided first, and then the moving obstacle process would be incorporated in later
sections.
This section is mainly divided into three parts, in which part-1 provides overview of
MPC algorithm and its structure, and part-2 presents obstacle-road grade process,
also called ABD-JDN algorithm and part-3 provide mathematical formulation of OCP
for stationary obstacle and road grade avoidance.

44

www.manaraa.com

3.2.1 Part-1: Overview of MPC algorithm

The basic level overview of algorithm and its inputs,outputs,plant model and algo-
rithm objectives are briefed in this section.

3.2.1.1 MPC algorithm Structure

As mentioned, MPC is most suitable for the autonomous navigation as it looks into the
future for the given horizon to simulate real time human driving conditions [35] and
make appropriate decisions to maneuver safely. The MPC uses system dynamic model
and surrounding information to formulate the optimal control problem systematically
and provide the optimal solution at each prediction step in one iteration. However,
the algorithm only implements initial prediction step solution called receding horizon
control on the plant and a new OCP would be formulated over the next iteration. This
enables handling of real-time optimization with hard constraints on the plant model
[34].However, the performance of the MPC algorithm mainly depends on vehicle plant
model, which needs to be modelled carefully to mimic the actual vehicle dynamics.

3.2.1.2 Vehicle plant model

In the present work, the vehicle is modeled with 8 DoF [47] and it refers a 101
DoF multibody dynamics model of a truck. The powertrain dynamics are modeled
using [48], [49] and nonlinear tire model has been modeled using [50]. For brevity, the
powertrain model has not been explained here and above mentioned references provide
more details for it. The vehicle parameters along with MPC tuning parameters are
provided in Table. 3.2. The model mimics the real vehicle system and it is referred
as vehicle plant model in the rest of the paperwork.i.e., the model can be replaced
with actual vehicle with appropriate inputs and outputs from external sensors and
actuators, the actual vehicle should be able to avoid stationary obstacles along with
steep regions.

45

www.manaraa.com

3.2.1.3 Algorithm objective

The main goal of present algorithm is to move AGV from its current position to
target position as soon as possible in an unstructured environment by meeting all
safety constraints. Here, the safety constraints include avoiding the stationary ob-
stacles, steep regions and preventing vehicle from rollover. Further, as mentioned
the unstructured environment refers roads without lanes and traffic rules, no priory
information of obstacles and steep regions. Therefore, the LIDAR modules be used
for obtaining the road and obstacle field conditions and the algorithm should be able
process its information and command the AGV towards target location as quickly as
possible by meeting the above safety constraints.

3.2.1.4 Algorithm inputs and outputs

The algorithm mainly requires three types of inputs that would provide sufficient
information to reach target location safely. The three inputs include current infor-
mation, target information and environment information is show in Fig. 3.1. In the
present study, the current information includes the current state estimates, which can
either be measured or estimated using the state estimator. In practice, it is not pos-
sible to measure all the states using sensors and an estimator is necessary to provide
current vehicle information.
The target information includes target position, desired heading and speed at target
location. Further, the environment information includes the obstacle location and
road grade indices and it is obtained through LIDAR modules and terrain map pro-
cess respectively. More details on obstacle and road grade processing and avoidance
is explained in part-2 of ABD-JDN algorithm section given below.
The outputs from the algorithm includes steering angle vehicle speed commands,
that would avoid all obstacles and reaches target location as soon as possible. Here,
though the algorithm produces reference vehicle trajectory, the present work has not
developed low level speed controller to mimic the real world and it is left for the
future work.

46

www.manaraa.com

3.2.2 Part-2: ABD-JDN algorithm

This section deals with environment data process and identifies obstacle-grade free
regions in the given path. In the present work, the ABD-JDN algorithm for obstacle-
grade processing is made in two stages. In the first stage, the road is assumed to be
flat and the algorithm is developed for avoiding the stationary obstacles alone. In
stage two, road slope is incorporated and the algorithm is extended to avoid both
obstacles and road grade in the defined LIDAR view region. Further, the LIDAR
view is defined based on the vision sensor maximum range and its ability to detect
obstacles with less noise is shown in Fig. 3.1. For instance, the Leddar VU8 sensor
[51] provide eight segments of sensor view, that are used for identifying obstacle
distance and position. Each segment can be extended for upto 150 m range with 20◦

horizontal spread angle. However, for the better accuracy of sensor measurements,
it is advisable to restricts its range to 70-100 m. Therefore, the present algorithm is
developed by considering the factors of real world sensor range, update rates and its
operating principles.
The following sub sections provide complete details on ABD-JDN algorithm with
appropriate definitions and figures in it.

3.2.2.1 LIDAR View definition

This is some times referred as Vehicle view or LIDAR-1 view region for stationary
obstacles, in the rest of the paperwork. In the present work, the function for obsta-
cle and road grade detection in the vehicle view region is developed through set of
rectangular boxes and each box can closely mimic Leddar VU8 sensor visibility [51].
The coordinates for each box is made with respect to the vehicle current position and
heading is shown in Fig. 3.2. Based on the current heading, there are 7 boxes made
for both left and right sides and each box has longitudinal length (height) of 75 m,
and lateral (width) length of 3.5 m.
The right boxes are indexed with positive numbers and vice versa. i.e., the straight
path along the vehicle current heading is defined with (1,-1) boxes, which covers the
area of 75x7 m2 is shown in Fig. 3.3(a). This way, a pair of two boxes has been taken
for search algorithm to make sure the area encloses the vehicle dimension and avoid
obstacles in both lateral and longitudinal directions. Therefore, the LIDAR view is
mainly divided into 3 sections on each side of the vehicle along with straight path
shown in Table. 3.1.

47

www.manaraa.com

40 60 80 100 120 140
X, (m)

50

60

70

80

90

100

110

120

130

140

Y
, (

m
)

P
0

Target

LIDAR View
Region for
Stationary Obsatcles

Figure 3.2: LIDAR view region for obstacle-grade analysis.

Table 3.1

LIDAR view sub sections based on box coordinate system

Box region Path Heading change

Box region: [-1, 1] Straight path No-change in heading

Box region: [2, 3] Right-1 path Current heading – pi/8

Box region: [-2, -3] Left-1 path Current heading + pi/8

Box region: [4, 5] Right-2 path Current heading – (2*pi/8)

Box region: [-4, -5] Left-2 path Current heading + (2*pi/8)

Box region: [6, 7] Right-3 path Current heading – (3*pi/8)

Box region: [-6, -7] Left-3 path Current heading + (3*pi/8)

3.2.2.2 Obstacle detection logic

The ABD-JDN algorithm mainly has two parts including 1). Obstacle detection
process 2.) Obstacle avoidance process. The obstacles in this context can include
road grade and moving obstacles too. However, the algorithm varies slightly for each
scenario and details for each scenario is explained in the following sections.
As mentioned, the first part of ABD-JDN algorithm includes obstacle detection and
followed by avoidance process. Therefore, this section provide complete details on
obstacle detection process. The obstacle detection process works based on the vehicle
current heading, slope of line joining between two points and corner points. As

48

www.manaraa.com

mentioned, the box co-ordinates (or corner points) are made parallel to the current
vehicle heading and distributed along lateral direction with a width of 3.5m in vehicle
left and right directions is shown in Fig. 3.3(a). Further, starting with left-bottom
corner point, four corner points would be connected in clock-wise direction to create a
rectangular box for obstacle search region. From Fig. 3.3(b), it can be seen that, the
left box in straight path consists of four corner points starting from its left bottom
corner point 1 to 4 in clock-wise direction. Similarly, the starting location for right
box in straight path would start from left-bottom corner point which becomes vehicle
current position. i.e, corner point 4 for left box becomes starting point 1 for the right
box in straight path. Therefore for the obstacle detection method, the corner points
along with slopes of lines joining corner points in clock-wise direction acts as limits for
detecting and processing the obstacle states in the LIDAR view region. This process
is done in two steps in the following manner,

I). The obstacle (xom, yom) position should be within the limits of diagonal corner
points of box. For instance, if an obstacle is identified in left box in straight
section the x co-ordinates of obstacle ((xom) is compared with x co-ordinates
of box diagonal corner points 1 and 3, and y co-ordinates of obstacle ((yom) is
compared with y co-ordinates of box diagonal corner points 2 and 4 to make
sure it is in the box limits.

II). The slopes of four lines, which are obtained by joining four box corner points
with obstacle point are compared with slopes of lines, that are made by joining
box corners in clockwise direction.

Therefore for the given box-region, the above two conditions need to satisfy in order
to confirm the obstacle detection in the corresponding box region. However, it is
important to note that the logic slightly changes its signs as the heading of the
vehicle varies from 0 to 360◦.

3.2.2.3 LIDAR data storage process

Once the obstacle is found in LIDAR view region, the ABD-JDN algorithm stores
its corresponding detected obstacle states in a temporary memory to provide envi-
ronment information to the MPC controller. However, due to the limited space and
computational burden, the temporary memory can store upto 76 obstacles informa-
tion. Further, the logic continuously updates the detected obstacles, that are within

49

www.manaraa.com

the 125 m perimeter from the current vehicle position and replaces the far distance
obstacles information. This way, the LIDAR data process provide appropriate envi-
ronment information to navigate the vehicle in smoother and controlled manner to
ABD-JDN algorithm and it is explained in the following sections.

3.2.2.4 ABD-JDN Algorithm: for stationary obstacle avoidance process

The second part of the ABD-JDN algorithm includes the obstacle avoidance process
and it depends on the stored obstacles in its LIDAR view region. The following
section explains about obstacle avoidance process in detail without considering the
road grade information in it.
The schematic of Obstacle avoidance process for a typical situation is given Fig. 3.3.
The process outputs target heading and target velocity based on the obstacle position
from vehicle current location and is explained in following sections.
As mentioned, the obstacle detect function makes use of the current vehicle position
and heading for creating box coordinates to process the LIDAR module data. Here,
assume that the each LIDAR unit can detect objects in 2 boxes with 5 m width and
75 m longitudinal height respectively. From the Fig. 3.3(a), the obstacle avoidance
process first searches in straight 2 boxes [1,-1] and if there are no obstacles in this
region, the vehicle tries to move towards target point without any change in its target
co-ordinates and travel with maximum speed. However, If there are any obstacles
found in either of 2 straight boxes, the algorithm look for the obstacle information
from its right 2 boxes [2,3] and if there are no obstacles in this region, the vehicle takes
slight right turn from its current heading value is shown in Fig. 3.3(b). Further, if
the right 2 boxes [2,3] find any obstacle, the algorithm look for the left 2 boxes [-2,-3]
and if it finds obstacle free region, it navigates the vehicle towards left direction is
shown in Fig. 3.3(c).
This logic repeats until it reaches the extreme left 2 boxes [-6,-7], which indicates the
obstruction of entire LIDAR view region is shown in Fig. 3.3(d). If all the boxes
or entire LIDAR view region is obstructed by an obstacle, the vehicle tries to move
extreme right direction. However, it is important to note that, the vehicle target
speed be changed based on the obstacle distance from the vehicle current position in
straight section. i.e., if the obstacle is found in straight section, the vehicle tries to
slow down first and then decides to go either right or left based on further search in
the logic. In the present logic, the vehicle speed decreases linearly from 29 to 5 m/s
as the obstacle distance changes from 75 to 5 m from the vehicle current location.
The Pseudo code on above explained logic is given Appendix A.

50

www.manaraa.com

60 80 100 120
X (m)

40

60

80

100

120

140

Y
 (

m
)

60 80 100 120
X (m)

40

60

80

100

120

140

Y
 (

m
)

60 80 100 120
X (m)

40

60

80

100

120

140
Y

 (
m

)

60 80 100 120
X, (m)

40

60

80

100

120

140

Y
, (

m
)

(d)

Left Box [-1]

Obstacles
in Straight and Right-1
sections,[-1,1],[2,3]

Obstacles
in whole LIDAR
view region

Search
takes place
in [-2,-3]

Heading
change

Heading
change

Heading
change

Right Box [1]

(a) (b)

(c)

Lengthy Obstacle

P0

41
Search takes
place
in [2,3]

2

Obstacle
in Straight
section,[-1,1]

3

Figure 3.3: Schematic of stationary obstacle avoidance process.

3.2.2.5 ABD-JDN algorithm: for combined obstacle and road-grade
avoidance process

As mentioned, this function outputs similar to the obstacle-avoidance process except
that, this logic includes road-grade information too. Therefore, the combined obstacle
and road-grade avoidance process provide the heading and velocity that would avoid
collision, based on the grade indices, obstacle detections and vehicle current position.

Road-grade indices definition:

In general, the highway and city commuting road grades range between 0-6.8◦ and
therefore, in the present work, it is assumed that the road grade more than 13.8◦ is
considered an obstacle and below 6.8◦ is considered as flat road is shown in Fig.3.7.
Further, it is difficult to process the road grade information for both lateral and
longitudinal directions at each point in the LIDAR view region. The LIDAR view
region approximately covers 75m in longitudinal direction and 5m in lateral direction.
Therefore, the terrain map processing in the present made assumptions to process
grade information to the ABD-JDN algorithm. The road grade is calculated at each
7m longitudinal distance for upto 75m in the given current vehicle direction and looks

51

www.manaraa.com

for the obstacle detection in the calculated region. If the road grade at all points meet
obstacle free region, the algorithm calculates grade with the step size of 1m distance
for upto 7m and averages for obtaining the grade in longitudinal direction (θx). This is
because, it is important to look for potential obstacles due to grade and then calculate
the grade that is near to the vehicle current position. This makes, vehicle to see look
ahead and make accurate decision on grade avoidance. Further, the lateral grade
(θy) be calculated by averaging the grades with step size of 1m in lateral direction
at a longitudinal distance of 2.5m. The higher layer steps involved in algorithm are
explained as follows

Step 1

When the algorithm finds no obstacle in straight path and having steep road-grade
indices, the logic makes decisions using Straight-path search method.

Step 2

If there are obstacles in straight-path and no obstacle in right-1 path, the logic uses
Right-side search method to navigate vehicle in obstacle free low-grade indices region.

Step 3

Further, if there exist obstacles in both straight and right-1 boxes, the logic uses
Left-side search method to navigate the vehicle.

Step 4

The step-2 and step-3 are repeated until the logic reaches left-3 path. i.e., if the
straight, right-1 and left-1 paths have obstacles, the logic looks for the right-2 path
and applies Right-side search logic to navigate the vehicle. Further, if the right-2 path
have obstacles, the algorithm makes search in left-2 path. In this alternative way, the
logic repeats until it reaches maximum available paths (3 paths on each side) and

52

www.manaraa.com

once it completes all the paths and confirmed that the whole LIDAR view region is
obstructed by obstacles, the vehicle maneuvers to extreme right direction is shown in
Fig. 3.3(d). The lower layer logic sections including Straight-path search, Right-side
search and Left-side search is provided in the following sections.

Straight-path search

Step 1

Similar to previous obstacle-avoidance logic, this logic searches for any obstacles in
the straight-path. If there are no obstacles in this region, it looks for the bumps/road-
grade information. The road-grade is explained in previous section. As mentioned,
the logic treats road-grade as an obstacle, when its grade region is more than 13.8◦.
Therefore, the logic initially searches for any obstacles including grade regions >
13.8◦ in the straight section and if there are no obstacles found, it further looks for
the minimum road-grade indices explained in the following steps.

Step 2

once the straight path is free from obstacles (including road-grade>13.8◦), the algo-
rithm looks for the road-grade information in the straight section and if the road-grade
indices is less than 6.8◦, the vehicle does not change its direction and travels with top
speed towards target location.

Step 3

However, if the road grade indices is more than 6.8 and less than 13.8◦, the algorithm
looks for the right-1 path (Box 2,3) boxes. i.e., if the right-1 path is free from
obstacles (including grade regions > 13.8◦) and grade indices is less than 6.8◦, the
vehicle algorithm outputs with heading that make vehicle to take right turn. However,
if there is any obstacle found in right-1 path, the vehicle travels in straight path with
reduced speed based on grade indices. Here, vehicle speed varies linearly between 29
to 2.5 m/s as the road indices changes from 6.8 to 13.8◦.

53

www.manaraa.com

Step 4

If the road-grade indices is more than 6.8 and less than 13.8◦ in both straight and
right paths without any obstacles, the algorithm looks for the left-1 path (Box -2,-3)
boxes. i.e., if the left-1 path is free from obstacles (including grade regions >13.8◦)
and grade indices is less than 6.8◦, the vehicle algorithm outputs with heading that
make vehicle to take left turn. However, if there is any obstacle found in left-1
path, the vehicle travels in straight path with reduced speed based on grade indices.
However, if all of 3 paths including straight, right-1 and left-1 paths are having grade
indices between 6.8 and 13.8◦ without obstacles, the algorithm outputs with heading
and speed that make vehicle to turn in low grade-indices path. As mentioned, the
algorithm also outputs the road-grade indices to main controller to meet the vehicle
lift-off constraint on each tire when vehicle travels on grading location.

Right-side search

This search is made, when the vehicle identifies obstacle in the straight section and
no obstacle in the right-1 path. As mentioned, in this logic any road-grade region >
13.8 is also considered as an obstacle. The right-side search method can be explained
as follows

Step 1

As mentioned, when there are obstacles in straight path vehicle initially looks for
the right-1 path. If there are no obstacles in right-1 path, it looks for the road-
grade information from right-1 path and if it is below 6.8◦, the vehicle take diversion
towards right-1 path. However, if both straight and right-1 paths have obstacles, then
the logic makes search in left-1 path is explained in Left-side search section.

Step 2

on the other hand, if the grade indices is between 6.8 to 13.8◦ without any obstacles
in right-1 path, the algorithm look for the right-2 path (box 4,5) boxes. i.e., if the
right-2 path is free from obstacles (including grade regions > 13.8◦) and grade indices

54

www.manaraa.com

is less than 6.8◦, the vehicle algorithm outputs with heading that make vehicle to
take right-2 turn. However, if there is any obstacle found in right-2 path, the vehicle
travels in right-1 path with reduced speed based on grade indices is explained in
previous steps.

Step 3

If the road-grade indices is more than 6.8 and less than 13.8◦ in both right-1 and
right-2 paths without any obstacles, the algorithm looks for the right-3 path (Box
6,7) . i.e., if the right-3 path is free from obstacles (including grade regions>13.8◦)
and grade indices is less than 6.8◦, the vehicle algorithm outputs with heading that
make vehicle to take right-3 turn. However, if there is any obstacle found in right-3
path, the vehicle travels in the direction of minimum grade indices between right-1
and right-2 paths with reduced speed. However, if all of 3 paths including right-1,
right-2 and right-3 paths are having grade indices between 6.8 and 13.8◦ without
obstacles, the algorithm outputs with heading and speed that make vehicle to turn in
low grade-indices path. Here, the algorithm checks for maximum paths available for
making obstacle-grade search and if it reaches maximum limit (3 paths on right side),
the vehicle stops search and makes the way into the minimum grade indices path.
The present study considered maximum of 3 paths on each side f vehicle. However,
the algorithm can be easily be extended to more number of paths to increase the
obstacle-grade search region and this would eventually increases the computational
burden on MPC formulation.

Left-side search

As mentioned, this search is made, when the vehicle identifies obstacles in both
straight and right-1 paths and no obstacle in the left-1 path. The logic for left-side
search is similar to the right-side search and maneuver the vehicle in obstacle free
low grade-indices path. The detailed flow chart on the above ABD-JDN algorithm
for Obstacle grade avoidance process is provided in Appendix .B.3.

55

www.manaraa.com

3.2.3 Part-3: Optimal control problem formulation using
MPC for Stationary Obstacle avoidance

min
Z,U ,Od

J = T [Z,U] +

∫ Tp

0

[Z(t),U(t), Od(t)]dt (3.1)

s.t.

Ż(t) = D[Z(t),U(t), θ] (3.2)

Zmin(t) ≤ Z(t) ≤ Zmax(t) (3.3)

Umin(t) ≤ U(t) ≤ Umax(t) (3.4)

S[Z(t), θ] ≤ 0 (3.5)

OSt[Z(t), O
j
d(t)] ≤ 0 (3.6)

Tp ∈ [Tpmax
, Tpmin

],L[Z, Ld, dt] ≤ 0 (3.7)

E [Z(t),Ztarget] ≤ 0 (3.8)

The optimal control problem can be formulated using the equations (3.1)-(3.8) and
the detailed explanation on each constraint and cost function have been made in the
following sections,

3.2.3.1 Equation (3.2): Dynamic model constraint

In the present work, the vehicle has been modeled with 8 states including
[x, y, ψ, vx, vy, ψ̇, ax, δf] and 2 control inputs Jf , γf . Here, x, y represents the vehi-
cle position with respect the center of gravity location and ψ represents the vehicle
yaw or heading angle. Further, vx,vy indicates vehicle longitudinal and lateral ve-
locity respectively. ψ̇, is yaw rate in rad/s, ax is longitudinal acceleration and δf is
steering angle.Further, the control inputs for the system model are jerk (Jf) in m/s

3

and steering rate (γf) in rad/s. The ODE model to represent vehicle dynamics can
be written in state space form as follows,

ż = A(z) + Bu (3.9)

56

www.manaraa.com

-20 -15 -10 -5 0 5 10 15 20
-6000

-4000

-2000

0

2000

4000

6000
Lateral Force with F

z
 = 6000 N

Linear zone

Nonlinear zones

Figure 3.4: Pacejka magic formula for estimating lateral tire forces

Where,

A(z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vx cosψ − (vy + lf ψ̇) sinψ

vx sinψ + (vy + lf ψ̇) cosψ

ψ̇ + (vx/l) tan δf
ax

(Fyf + Fyr)/Mtotal − vxψ̇
(Fyf lf − Fyrlr)/Iz

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

[
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

]

Here, vehicle parameters including lf ,lr are called distance from front and rear wheel
axle to vehicle C.G. location in m; Mtotal is total mass of the vehicle in kg and
Iz is the moment of inertia about z − axis in kg − m2. For most of on-road low
speed applications, the tire slip angles are low and they fall in linear zone and it
is sufficient to use linear tire model for developing lateral controller. Therefore, the
vehicle lateral states including y, ψ can be estimated using linear portion of Fig.3.4 by
having constant cornering stiffness coefficient and vehicle parameters [52]. However,
for high speed, off road applications the tire slip angles are large and linear portion of
tire model is no longer valid. Therefore, for the present study a nonlinear tire model
is required to estimate lateral forces and thus accurate vehicle lateral states is given
in (3.9). Here, Fyf ,Fyr are called front and rear lateral tire forces in N respectively.
These vehicle lateral tire forces are estimated using Pure-slip Pacejka-magic formula
[50] with the function of vertical load Fz and slip angles α∗ is shown in Fig. 3.4. The
simple Pacejka tire model estimates lateral forces as follows,

Fy∗ = D∗ sin(C∗ arctan(X∗ − E∗X∗ + E∗ arctan(X∗))) (3.10)

57

www.manaraa.com

in the above equation ∗ can be assigned to f, r with f being front and r being the
rear tire respectively. Further, X∗ = B∗α∗ and B∗, C∗, D∗, E∗ are function of vertical
load Fz. The front and rear slip angles can be defined in terms of vehicle states and
control inputs as follows

αf = δf − arctan(vy/vx)− (lf ψ̇)/vx (3.11)

αr = − arctan(vy/vx) + (lrψ̇)vx (3.12)

Here, αf should be in deg and vertical load Fz should be in kN for estimating the
lateral forces using Pacejka model. The vertical load on each axle for a single track
bi-cycle vehicle model, without considering the longitudinal and lateral load transfer
on a flat road can be written is as follows,

Fz,f0 = (Mslr/l +Mu,f)g (3.13)

Fz,r0 = (Mslf/l +Mu,r)g (3.14)

Where, Ms is the sprung mass, Mu,f and Mu,r are unsprung mass at front and rear
side respectively. Further, the sprung and unsprung mass are estimated using [53],
and the equations for calculating these parametres are,

Mtotal =Ms +Mu (3.15)

Mu = 0.1412 ∗Mtotal (3.16)

Muf =Mur =Mu/2 (3.17)

However, during high speed and steep road conditions, considerable longitudinal load
transfer occur and it is important to account for these changes in vertical load, such
that the tire lateral forces in Pacejka model would be estimated accurately [50].
Therefore, the following terms would be added to account for longitudinal load trans-
fer in vertical load calculations,

Fz,f = Fz,f0 − μz,x(ax − vyψ̇)− FgradeX (3.18)

Fz,r = Fz,r0 + μz,x(ax − vyψ̇) + FgradeX (3.19)

FgradeX = (Mtotalghθx)/l (3.20)

Here, μz,x refers to the longitudinal load transfer co-efficient for estimating vertical
load shift due to acceleration and deceleration of vehicle [25]. The parameter FgradeX
is force due to road grade in longitudinal direction, N ; h is the height of C.G. from
ground in m; θx is the road grade in longitudinal direction, rad. From the Equations
(3.18) and (3.19), it can be clearly observed that the positive road grade transfer
longitudinal load onto rear wheels and negative road grade transfer load onto front
wheels. However, for a single track bi-cycle model, it is assumed that left and right
wheels lumped together into one wheel for both front and rear axles. Therefore, the
following assumptions are made while calculating lateral tire forces [25],

58

www.manaraa.com

Assumption-1

α∗,left ≈ α∗,right � α∗ (3.21)

As mentioned, ∗ represents for both front and rear and the Equation (3.21) implies
the left and right slip angles are assumed to be same for calculating lateral tire forces.

Assumption-2

�(Fa, ∗) +�(Fb, ∗) ≈ �(Fa + Fb, ∗) (3.22)

from (3.22), the tire lateral force is approximately in linear function with tire vertical
load and thus eliminating the effect of lateral load transfer in tire lateral force calcu-
lations.
The detailed explanation on tire forces including lateral and longitudinal load trans-
fers is given in [25] and briefly explained in vehicle wheel lift-off or dynamical safety
constraint section.

3.2.3.2 Equations (3.3), (3.4):State and control constraints

As mentioned, the optimal solution generates control commands in terms of steering
rate γf and jerk Jf . Here, steering rate command is used for lateral control and Jerk
is used for longitudinal control respectively. These control commands ensure smooth
vehicle operation compared to steering angle and speed as control inputs. Due to
vehicle mechanical linkage limits on steering system, the steering angle and steering
rate are restricted to between constant bounds and it it written as follows,

δfmin
≤ δf (t) ≤ δfmax

(3.23)

γfmin
≤ γx(t) ≤ γfmax

(3.24)

On the otherhand, the acceleration is restricted based on the full load operation of
power train and brake dynamics [25]. Here, N represents the number of predictions
made during one MPC sampling period or iteration. Therefore, all the state and
control command limits need to be satisfied for all vehicle future predictions in the
given problem formulation.

axmin
[vx(t)] ≤ ax(t) ≤ axmax

[vx(t)] (3.25)

59

www.manaraa.com

Therefore, the acceleration and braking bounds are function of vehicle speed and com-
plete details on acceleration limits can be found in [25]. For brevity, the polynomial
fit equations for acceleration and braking limits is provided through below equations
(3.26), (3.27).

axmax
[vx] = c1v

3
x + c2v

2
x + c3vx + c4 (3.26)

axmin
[vx] = c5v

3
x + c6v

2
x + c7vx + c8 (3.27)

Further, based on vehicle powertrain and obstacle field density, the constant upper
and lower bounds are imposed on vehicle longitudinal speed, Jerk and the bounds
on vehicle yaw ψ is restricted between 0 − 359◦ to ensure vehicle navigation in all 4
quadrants is given in equations (3.28),(3.30).In addition, due to the mechanical limits
of steering angle and vehicle dynamical safety constraints on each tire ensures implicit
constraints on yaw rate ψ̇ and lateral speed vy and it is discussed in the next section.

vxmin
≤ vx(t) ≤ vxmax

(3.28)

ψmin ≤ ψ(t) ≤ ψmax (3.29)

Jfmin
≤ Jf (t) ≤ Jfmax

(3.30)

3.2.3.3 Equation (3.5):vehicle dynamical safety constraint

The vehicle safety for rollover prevention has been confirmed with the load on each
tire should be minimum of 995N . This constraint has to be satisfied at all times
including steep roads, variable speed and steep cornering conditions. As mentioned,
for variable speed and steep road conditions, considerable longitudinal load transfer
takes place and it is important to account for longitudinal load transfer to ensure
vehicle safety. Previous studies [32],implemented this constraint through steering an-
gle limits or lateral acceleration limits [54] and omitted the longitudinal load transfer
effects. Further, the prior work from [25], included longitudinal load transfer effects
but restricted the vehicle safety constraint to rear wheels alone as it has assumed
the flat road condition in the problem formulation. However, the inclusion of road
grade in the current problem formulation creates substantial load transfer from front
wheels during positive road-grade operation. Therefore, it is required to apply min-
imum vertical load constraint on all 4 wheels to make sure vehicle stability on the
ground. Vehicle safety constraints for rollover prevention has been made through
following equations,

Fz,f−left = 0.5.Fz,f −ΔFz,yf (3.31)

Fz,f−right = 0.5.Fz,f +ΔFz,yf (3.32)

Fz,r−left = 0.5.Fz,r −ΔFz,yr (3.33)

Fz,r−right = 0.5.Fz,r +ΔFz,yr (3.34)

60

www.manaraa.com

The above equations from (3.31)-(3.34) estimate the load on each tire by considering
the effects of grade, lateral and longitudinal load transfers [25]. Therefore, these esti-
mated loads on each tire should meet the minimum specified vertical load to prevent
the vehicle from rollover. Here, Fz,f , Fz,r accounts for longitudinal load transfer for
front and rear axles and are detailed in Equations 3.18,3.19. The ΔFz,yf is for front
axle lateral load transfer and ΔFz,yr is for rear axle lateral load transfer. Further,
these load transfers can be approximated through set of simulations including the
effects from variable speed and road grade as follows,

ΔFz,yf = μz,yf (v̇y + vxψ̇ + sin(θy)) (3.35)

ΔFz,yr = μz,yr(v̇y + vxψ̇ + sin(θy)) (3.36)

Here, μz,yf and μz,yr are called lateral load transfer coefficients for front and rear axles
respectively and θy is road grade in lateral direction. More details on estimating these
load transfer co-coefficients and plant model used for simulations are provided in [25].
For brevity, a brief discussion on how the load transfer coefficients are estimated and
importance of these parameters in estimating vertical load on each tire is given below.
The longitudinal load transfer coefficient is estimated by two sets of simulation results,
in which first set of simulations are made while vehicle is operating at different levels
of constant throttle openings with zero steering and braking commands. whereas for
the second set of simulations, the vehicle is operated at different levels of constant
brake commands with zero steering and throttle commands. i.e., the first set of
simulations provide the effect of vehicle acceleration and second set of simulations
provide effect of braking/deceleration on longitudinal load transfer.
Similarly for lateral load transfer coefficients, the simulations are made with sinusoidal
variation of steering angle while keeping the longitudinal speed nearly constant or
varying with very low frequency relative to steering angle variation frequency. These
simulations essentially provide the effect of cornering on lateral load transfer. The
equations from (3.31)-(3.36) and rearranging the vx,vy terms in non-linear tire model,
the final dynamical safety constraint can be abbreviated as follows,

S(vx, vy, ψ, δf , ax, θ) ≤ 0 (3.37)

3.2.3.4 Equation (3.6):Stationary obstacle avoidance constraint

The obstacle avoidance constraint can be applied through simple distance formula,
where the minimum distance between all the predicted vehicle positions and obstacles
in the LIDAR view region should be more than a threshold value. This threshold
value should be more than zero or any positive number. This creates a for-loop
with k-iterations and k being the number of obstacles found in LIDAR region. In
the present work, for the purpose of improving code performance, the maximum
number of obstacles that can be detected in the LIDAR view region is restricted to

61

www.manaraa.com

76. The following Pseudo code is developed for avoiding obstacles Therefore, the

Algorithm 1 Stationary Obstacle avoidance constraint

for i = 1 : no of vehicle predictions(N) do
for j = 1 : no of obstacles(k) do

Od =

√
(Pi −O

(j)
m)2 ≤ 7m

end for
end for

above obstacle avoidance can be abbreviated as follows,
Ost[Z(t), O

(j)
d (t)] ≤ 0 (3.38)

3.2.3.5 Equation (3.7):Prediction horizon constraint

It is critical to make prediction horizon with sufficient length to avoid obstacles that
are not known priory in an unstructured environment. Therefore, to avoid any po-
tential obstacles in advance, the vehicle states needs to be predicted for the minimum
specified LIDAR view range Ld, given in Table. 3.2. This constraint is obtained
through following equations,

Lp = vx ×N × dt (3.39)

Ld − Lp ≤ 0 (3.40)

Here, Lp, vx,N ,dt represents the prediction horizon length in m ,vehicle longitudinal
speed in m/s, number of predictions and time duration for each prediction respec-
tively. Further, the prediction horizon window is defined using Tp = N × dt in sec.
In CasADi problem formulation, it is difficult to vary the number of predictions N
value than duration for each prediction dt. Therefore, the dt is varied based on the
vehicle speed and keeps prediction horizon length at minimum specified LIDAR view
range value. This constraint can be abbreviated in the following manner,

L[Z, Ld, dt] ≤ 0 (3.41)

3.2.3.6 Equation (3.8):Stop constraint

This constraint simply ensures that the vehicle reached within the considerable limits
of target location and vehicle can come to complete stop and reduces its predictions
according to the target location. This constraint is only applicable, when the target
position is within the LIDAR view range and both the soft and hard constraints be

62

www.manaraa.com

replaced with the below equations from
xg − ε ≤ x(t) ≤ xg + ε (3.42)

yg − ε ≤ y(t) ≤ yg + ε (3.43)

Here, ε is a small margin in m and vehicle said to be reached target, when it falls
under this margin.The above constraint can be abbreviated as follows,

E [Z(t),Ztarget] ≤ 0 (3.44)

3.2.3.7 Cost function

The cost function is formulated for estimating the optimal steering angle and speed
that would meet following requirements,
1. avoid obstacles and steep regions without priory information of them
2. reach the target as soon as possible
3. meet the vehicle safety requirements
4. Apply minimal control efforts.
As mentioned, the Non-linear MPC makes future predictions based on current vehi-
cle position and thus the vehicle states are compared with target states during the
prediction and at the end of prediction. The terms that are associated during the
prediction called integral terms, whereas terms associated at the end of prediction
called terminal cost terms. In the present work, there are total of eight terms in-
cluding four integral cost terms and four terminal cost terms along with appropriate
weights is given below,

J =wd
df
d0

+ wψ(Δψ)
2 + wt(Tp) +

∫ k

0

[
wobs
Odp

]

+ wψf

∫ Tp

0

[sin (ψg)(x− xg)− cos (ψg)(y − yg)]
2dt

+ wfz

∫ Tp

0

[tanh (−
Fzr−left − a

b
)

+ tanh (−
Fzr−right − a

b
)

+ tanh (−
Fzf−left − a

b
) + tanh (−

Fzf−right − a

b
)]dt

+

∫ Tp

0

wQ[z(1 : 4)− ztar(1 : 4)]dt

+ wc

∫ Tp

0

[wδδ
2
f + wJJ

2
f + wγγ

2
f]dt (3.45)

63

www.manaraa.com

For brevity, the basic definitions of cost terms and their significance have been pro-
vided in the present work and more details can be found in [25]. Here, d0 is the
distance between vehicle current position [x0, y0] to target position [xg, yg] and df is
the distance between vehicle final prediction position [x(Tp), y(Tp)] to target position.
The second terminal term Δψ is the difference between final prediction heading angle
ψ(Tp) and the angle of relative target heading, which is calculated from [x(Tp), y(Tp)]
relative to [xg, yg] is given in below equation (3.46).

Δψ = atan2[sin (ψ(Tp)− ψrtg), cos (ψ(Tp)− ψrtg)]

ψrtg = atan2[(yg − y(Tp)), (xg − x(Tp))] (3.46)

The geometric representation of first three terminal terms in cost function indicates
the final predicted vehicle position and angle should tend towards target with min-
imum time to reach the final predicted position. Further, the final terminal term
provide soft constraint on stationary obstacle avoidance. Here, the Odp indicates
the distance between stationary obstacle and x(Tp), y(Tp), and k represents the total
number of obstacles detected in LIDAR view region. Therefore, with the appropriate
weights, the predicted trajectory would avoid obstacles and reach target location as
soon as possible.

In addition, there are four integral terms in which first term minimises the lateral
error in predicted trajectory and the second term penalises the cost function, when the
vertical load on each of the four tires is approaching the minimum specified load. This
prevent the vehicle from unnecessary operation of near dynamical safety constraint.
Here, parameters a, b are defined as follows

a = Fzthr + 3Fzoff

b = Fzoff (3.47)

The values for a, b, Fzoff and Fzthr are provided in Table. 3.2, and more details can be
found in [24]. The third integral term minimises the error between the target vehicle
states including x, y, ψ, Vx and corresponding prediction vehicle states to ensure the
vehicle is tending towards target location. Therefore, the weight term wQ is a 4× 4
diagonal matrix, in which each diagonal element penalises the corresponding sate
parameter. The final integral term represents the minimal control effort required
to navigate the vehicle and penalises the cost function using weighting parameters
wδ, wJ , wγ are given in Table.3.2.

64

www.manaraa.com

3.3 Methodology for moving obstacles

As mentioned, the ABD-JDN algorithm can be applied to moving obstacle avoidance
process with slight modification in its LIDAR detection process. Therefore, similar
to stationary obstacle methodology, this section is mainly divided into three parts,
in which part-1 provides moving obstacle detection process, part-2 provides mov-
ing obstacle state identification and avoidance process and part-3 presents the OCP
formulation for moving obstacles and all three parts are explained in the following
sections in detail,

3.3.1 Part-1: Detection process

The detections for moving obstacles are made with an angle of pi/12 from the vehicle
straight view. Because, the obstacles either moving or stationary in straight section
can be avoided through stationary obstacles avoidance algorithm and it is explained in
previous sections. Further, the detection logic for moving obstacles is slightly different
from stationary obstacle search logic. However, the logic still uses box detect method
to find obstacles in the corresponding LIDAR view regions. It is assumed that, the
vehicle mainly consists of three LIDAR modules with LIDAR-1 module being used for
providing obstacle information in straight section, LIDAR-2 module provides obstacle
information in vehicle right side direction and LIDAR-3 module provide vehicle left
side obstacles information respectively. i.e., LIDAR-1 module is used for stationary
obstacles avoidance algorithm and LIDAR-2 and LIDAR-3 modules are added to the
moving obstacle analysis. Further, the LIDAR-2 and LIDAR-3 modules are assumed
to be mounted with pi/12 angle from the vehicle straight section and the obstacle
detection logic for LIDAR-2 and LIDAR-3 modules are processed as follows,
The obstacle detection or search logic for moving obstacles uses similar box detect
logic from the previous stationary obstacle detection. It creates six box regions for
obstacle search in both left and right directions of vehicle to mimic the LIDAR-2
and LIDAR-3 module regions. i.e.,LIDAR-2 module region consists of six boxes, that
are −π/12 angle deviation from the vehicle current heading or straight path boxes.
Similarly, LIDAR-3 module region consists of 6 boxes that are π/12 deviation from
straight path as shown in Fig. 3.5. Therefore, the left and right LIDAR view regions
are made with respect to the vehicle current heading and adding π/12 rad of angle
in each side respectively. The moving obstacle detection logic first searches in right
6 boxes using slope search logic and then moves to left 6 boxes is shown in Fig. 3.5.
When the obstacle is identified in either of box regions, the logic stores its position
information in the temporary memory. The stored detected obstacle information is

65

www.manaraa.com

40 60 80 100 120 140
X, (m)

50

100

150

Y
, (

m
)

P
0

Target

LIDAR-2 view
 region

LIDAR-3 view
 region

Figure 3.5: LIDAR view region for moving obstacle analysis

further processed to state identification section to know the obstacle speed and angle
of shoot. The following sections provide detailed explanation on moving obstacle
identification process and their state handling process in OCP problem formulation.

3.3.2 Part-2: State identification process

As the name suggests, in this section the logic estimates the obstacle states including
position, speed and direction by using the vehicle state model and sensor model is
explained below sections. The logic works based on the sensor and obstacle temporal
information and the predictions of vehicle states. Here, it is assumed that, the LIDAR
update rate is n times faster than MPC iteration or sampling time. During this
sampling time period the logic makes certain calculations to confirm the obstacle
movement and make its speed and heading estimations.

Vehicle state model

As mentioned, this model receives the obstacle position information from the stored
detection process section. The vehicle state model provide vehicle prediction states
based on the system dynamic model defined in equation 3.9. However, the predictions
are made with the update rate of dtmv = Ts

n
, sec and thus n prediction states are

66

www.manaraa.com

made in one MPC sampling period of Ts, sec. Further, a distance calculation be
made between the n prediction states (Pmv,i) and detected obstacle current/initial

states O
(j)
m,0 and is given in eq. 3.48.

DVmobs
[i, j] =

√
(O

(j)
m,0 − Pmv,i)2 (3.48)

Here, i indicates number of predictions in one MPC iteration or sampling period Ts,
where (i = 1, 2, 3..n), and j is number of obstacles detected in moving obstacle LIDAR
view region, where (j = 1, 2...k), and each distance column array in DVobs represents
distance from individual detected obstacle current position to predicted vehicle states
is shown in Fig. 3.6(a). Therefore, if there are k number of obstacles are detected
with n vehicle prediction states, the distance matrix would become [n× k] matrix is
given in the following matrix,

DVmobs
[n, k] = ⎡

⎢⎢⎢⎢⎢⎢⎢⎣

√
(O

(1)
m,0 − Pmv,0)2 . .

√
(O

(k)
m,0 − Pmv,0)2√

(O
(1)
m,0 − Pmv,1)2 . .

√
(O

(k)
m,0 − Pmv,1)2

. . . .

. . . .√
(O

(1)
m,0 − Pmv,n)2 . .

√
(O

(k)
m,0 − Pmv,n)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.49)

As mentioned, In the present moving obstacle analysis, the number of predictions (n)
and sensor measurements considered in one MPC sampling time period Ts is same and
it is assumed as 5. Further, the maximum number of obstacles (k) can be detected
in LIDAR view region is restricted to 75. The above Vehicle to obstacle distance
array matrix DVobs [n, k] is stored in a temporary memory for further comparison with
sensor model and provide important information with respect to the moving obstacle
identification and it is explained in following sensor model section.

Sensor model

As mentioned, the LIDAR sensor is assumed to be n times faster in providing obstacle
information and thus make n measurements in one MPC iteration or sampling time
period Ts. It is assumed that, the each measurement is made with equal interval
and that coincide with the vehicle state model predictions (Pmv,i). Therefore, at each
sensor measurement, it is assumed that the vehicle position changes and coincide
with the vehicle model prediction states (Pmv,i). The time period dtmv for vehicle
predictions and LIDAR sensor measurements in moving obstacle analysis is too small
and it is appropriate to assume the sensor measurements made at predicted vehicle
states (Pmv,i). Similar to the vehicle state model, a distance calculation be made

67

www.manaraa.com

(a) (b)

(c) (d)

Figure 3.6: An illustration of moving obstacle state identification process
in LIDAR view for moving obstacle zones; subplots (a) and (b) presents
typical stationary obstacle detection process; subplots (c) and (d) presents
typical moving obstacle detection process

between vehicle prediction states and measurement states is given in below (3.50).

DSmobs
[i, j] =

√
(O

(j)
m,i − Pmv,i)2 (3.50)

Here, each column in DSmobs
represents measured obstacle distance from vehicle pre-

diction states and can be written in matrix form as follows,

DSmobs
[n, k] = ⎡

⎢⎢⎢⎢⎢⎢⎢⎣

√
(O

(1)
m,0 − Pmv,0)2 . .

√
(O

(k)
m,0 − Pmv,0)2√

(O
(1)
m,1 − Pmv,1)2 . .

√
(O

(k)
m,1 − Pmv,1)2

. . . .

. . . .√
(O

(1)
m,n − Pmv,n)2 . .

√
(O

(k)
m,n − Pmv,n)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.51)

Further, each row in DSmobs
represents the sensor measurement updated distance with

the corresponding vehicle predicted position Pmv,i. Therefore, when the obstacle is
stationary the final row of sensor model distance matrix matches with final row of
vehicle state model. Therefore, the condition for moving obstacle is defined as follows,
(3.50).

DVmobs
[nth, kth]−DSmobs

[nth, jth] > Stthr (3.52)

Here, Stthr is a small positive number in distance that would compensate for the

68

www.manaraa.com

LIDAR sensor measurement noise. Once, it is confirmed that the obstacle is moving,
the further analysis for finding corresponding obstacle speed and angle of shoot is
made through following moving obstacle state handling section.

3.3.2.1 Moving Obstacle state handling process

The below equations from (3.53)- (3.55) provide moving obstacle state information
including speed, heading and position.

[x
(j)
mobs, y

(j)
mobs] = O(j)

m,n (3.53)

v
(j)
mobs =

(

√
(O

(j)
m,n − Pmv,n)2 −

√
(O

(j)
m,0 − Pmv,0)2)/dtmv (3.54)

ψ
(j)
mobs = atan2(O(j)

m,n, O
(j)
m,0) (3.55)

i.e, During one sampling time period t, the difference between initial and final mea-
surements of LIDAR sensor provide corresponding obstacle speed and heading di-
rection estimates. Based on these obstacle state estimations and LIDAR detection
process, the state handling process determines the detected obstacle is in dangerous
zone through the equations (3.56) and (3.57).

ψ
(j)
mobs > ψ (or) ψ

(j)
mobs < ψulimit (3.56)

ψ
(j)
mobs < ψ (or) ψ

(j)
mobs > ψllimit (3.57)

Here,
ψulimit = (ψ + (π + π/9))

ψllimit = (ψ − (π + π/9))

Once the algorithm determines that the detected moving obstacle is in dangerous
zone, the corresponding estimates are stored in parameters that would later be used
for updating moving obstacle states in NMPC problem formulation. The predictions
of obstacles and the corresponding constraints are explained in NMPC with mov-
ing obstacle problem formulation. Further, the obstacles with road grade avoidance
process is still applicable and it is detailed in section.3.2.2.5.

69

www.manaraa.com

3.3.3 Part-3: Optimal control Problem formulation for mov-
ing obstacles

The optimal control problem formulation for moving obstacles is an extension to the
existing stationary obstacle formulation. The cost function and constraints are still
valid for the moving obstacle formulation too. However, there are two major aspects
have been incorporated to the stationary obstacle formulation and it is explained in
the following session,

Vehicle dynamic constraint for moving obstacle

The first major change in moving obstacle problem formulation is, incorporating
moving obstacle model into vehicle model using obstacle speed and angle of shoot
information is given in Amv matrix. i.e., in-addition to vehicle states the moving
obstacle states are predicted for the given horizon length. As mentioned, the obstacle
speed and angle of shoot are obtained through Moving obstacle LIDAR process at
each MPC iteration and this information is fused with vehicle state model to make
predictions.
Therefore, the vehicle dynamic state model for moving obstacle is defined as, Where,

A(z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vx cosψ − (vy + lf ψ̇) sinψ

vx sinψ + (vy + lf ψ̇) cosψ

ψ̇ + (vx/L) tan δf
ax

(Fyf + Fyr)/Mtotal − vxψ̇
(Fyf lf − Fyrlr)/Iz
v
(1)
mobs cosψ

(1)
mobs

v
(1)
mobs sinψ

(1)
mobs

v
(2)
mobs cosψ

(2)
mobs

v
(2)
mobs sinψ

(2)
mobs

v
(3)
mobs cosψ

(3)
mobs

v
(3)
mobs sinψ

(3)
mobs

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

(
02×6

1 0
0 1

)

70

www.manaraa.com

Here, vjmobs,ψ
j
mobs are moving obstacle longitudinal speed and angle of shoot respec-

tively and here, j = 1, 2, ..k, represents the number of moving obstacles detected in
the region. The algorithm can easily be expanded to any number of moving obsta-
cles. However, due to computational limits, the present study can handle maximum
of three moving obstacles in the given vehicle view region. Further, from constraint
equation (3.7), the prediction horizon depends on vehicle longitudinal speed than
moving obstacle speed and thus the prediction length for moving obstacles is not
fixed and it would vary based on the vehicle speed vx.

Moving obstacle avoidance constraint

Once, the moving obstacle state predictions are made, it is critical to develop a
constraint that would avoid these predictions from vehicle collision. Therefore,the
second major change in moving obstacle formulation is adding the extra moving
obstacle constraint to the existing algorithm and it is explained with the below Pseudo
2. Therefore, the above obstacle avoidance can be abbreviated as follows,

Algorithm 2 Moving Obstacle avoidance constraint

for i = 1 : no of vehicle predictions do
for j = 1 : no of moving obstacles do
for im = 1 : no of moving obstacle predictions do

Odmobs
=

√
P (i)−O

(j)
(p,im))

2 ≤ 7m

end for
end for

end for

Omobs[Z(t), O
(j)
mobs(t)] ≤ 0 (3.58)

From the above two sections, the problem formulation for moving obstacles can be
The NMPC problem formulation along with moving obstacles constraints are formu-
lated using casadi software [55] which is explained in the following ‘N-MPC problem
formulation using Casadi tool’ section.

71

www.manaraa.com

3.4 N-MPC problem formulation using Casadi

tool

The present work uses open source numerical optimization tool called CasADi, for
formulating the optimal control problem [55]. The CasADi tool is efficient in solving
Non-linear programming problems and best suits for the present N-MPC obstacle
avoidance application. The CasADi uses symbolic framework to formulate cost func-
tion, constraints and use these to define automatically differentiable functions. Fur-
ther, for better convergence direct multiple shooting method is implemented in the
present CasADi formulation framework. However, the CasAdi is not a mathematical
solver tool, instead it set up the problem to feed it into external solver for the better
and fast results. The user can chose any external solver based on the intricacy of the
problem. However, in the present work Interior point method (IPOPT) [56] solver
is used for solving the obstacle avoidance optimization. The following steps are used
for formulating the point stabilization problem in CasADi via full featured MATLAB
coding

1). Define all design variables including states and control inputs using CasADi
symbolic framework.

2). Formulate Objective function (J) using above defined symbolic design variables.

3). Define constraints using design variables, g. This includes ODE formulation
using CasADi function definition. Here, some of the constraints be updated at
each iteration based on the updated optimization variables. For instance, in
the current problem the constraints on acceleration would be updated at each
iteration based on current vehicle speed design variable.

4). Define optimization or manipulated variables, w. These variables would be
updated at each iteration and at each node (for multiple shooting method) to
reach the target point.

5). Define initial and target variables P for the point stabilization problem. In
the present work, the target values may vary temporarily during the navigation
for avoiding the obstacles. However, the final objective target location would
not be changed. For instance, the target heading and velocity can be updated
at each iteration based on detected obstacle distance and road grade indices.
Therefore, vehicle can slow down and take aversion for avoiding these obstacles.
However, the final target point at which vehicle need to arrive would not be
changed.

72

www.manaraa.com

6). Formulate the Non-linear MPC problem using J, g, w, P variables in struct and
chose the solver. As mentioned, in the present work, the IPOPT solver is used
for solving the optimization problem [56].

7). Define solver settings including convergence criteria,maximum itera-
tions,acceptable objective change tolerance and print level.

8). Assign the above problem formulation and solver to an object S using nlpsol
syntax. The defined object S is used for accepting the updated design and
target variables at each iteration and provides the least cost optimization control
commands for navigating vehicle through obstacle-grade fields.

Unlike the conventional methods, from steps 1 to 7, all terms including cost function,
design variables, constraints are defined symbolically and therefore the optimization
problem would be solved in efficient manner by saving physical memory allocation
on each variable. This way, CasADi tool provide convenient way to define target
variables, constraints, cost terms and assign custom solver for solving complex opti-
mization problems.

3.5 Results and Discussion

The results and discussion section is mainly divided into 2 sections, in which first
section provide results on avoiding stationary obstacles along with steep regions and
later section incorporates moving obstacle avoidance to the existing results.

3.5.1 Results on stationary obstacles and steep region
(bumps) avoidance

This section deals with simulation results of developed non-linear MPC stationary
obstacle avoidance algorithm with road grade included the model. In this section,
six simulations with five paths have been considered to observe the performance of
the algorithm from simple through relatively complex obstacle field scenarios. Out
of five scenarios, first three simulations have made for constant speed and variable
speed conditions with no road grade (flat road condition) in the model. The constant
speed used in the present work is 20 m/s and in the variable speed condition, it can
be varied from 5 to 29 m/sec. These simulations are made to compare the effect of

73

www.manaraa.com

Table 3.2

N-MPC optimization parameters

Parameter Value Units
Mtotal 2869 kg
Iz 4110 kg −m2

Ld 75 m
lf , lr 1.58,1.72 kg
μz,x 806 N/(m/s2)
μz,yf 675 N/(m/s2)
μz,yr 1076 N/(m/s2)
Fz,thr 995 N
a, b 1300,100 N
[δf,min, δf,max] [-30,30] ◦

[vx,min, vx,max] [5,29] m/s
[Jf,min, Jf,max] [-5,5] m/s3

[γf,min, γf,max] [-5,5] ◦/s
[Od,min, Od,max] [7,∞] m
Stthr 5 cm
θcritical 15 ◦

[θthr,min, θthr,max] [6.8,13.8] ◦

wd, wpsi, wobs, wt 0.5,1e+1,1e-3,5e-3 −
wpsif , wfz , wc 5e-2,5e-3,1 −
wQ[1, 1], wQ[2, 2] 5e-2,5e-2 −
wQ[3, 3], wQ[4, 4] 6e+1,5e+1 −
wδ, wJ , wγ 5e-3,5e-2,5e-2 −

constant speed and variable speed conditions and thus to make sure both conditions
reach target safely. The remaining two simulations are made to show the performance
of algorithm that is capable of maneuvering the vehicle through steep/bumpy regions
along with complex obstacle field. Here two types of obstacles are considered, one
with constant 5 m diameter called individual obstacle and other with lengthy obstacle
with different shapes. The complex field can be defined with density of individual
obstacles and lengthy obstacles with varying sizes.
The road grade is made using contour plot with the maximum value of 14◦ and mimics
the real road conditions is shown in Fig.3.7. The map can be replicated in negative
grade direction and the results are still valid for the given range of grade magnitude.
The grade between the contour lines are interpolated for the actual grade value and
handling of road for the avoidance is explained in ABD-JDN algorithm. As men-
tioned, the road grade below 6.8 ◦ is considered as flat road condition and in the
first 3 set of simulation results, the contour plot for grade is not included. i.e.,the
white space background in the first 3 simulation results indicates the results with flat

74

www.manaraa.com

0 50 100 150 200 250 300
X, (m)

0

50

100

150

200

250

300

Y
, (

m
)

2

4

6

8

10

12

14

Figure 3.7: A typical steep region construction in the off-road navigation

road condition. Table. 3.2. shows the details of lower, upper and critical threshold
values used in the study and as mentioned, the vehicle treats any road grade value
that is above critical value as obstacle. However, the vehicle can still pass through
the regions that are lower than critical grade value to optimize the target path.
In the simulation, the initial speed of vehicle is fixed at 20 m/sec and LIDAR detec-
tion range is assumed to be 75 m from the vehicle front position. The final objective
of algorithm is to avoid obstacles and steep regions that are above critical value with
a minimum distance of 8 m from the vehicle current position by using the obstacle
search algorithm. However, the algorithm tries to avoid steep regions that are below
critical value by meeting the vehicle safety and optimum path constraints. Though
the LIDAR modules can process the 90◦ vehicle view, the obstacle search algorithm
restricts its fusion processing, when it is unnecessary. i.e, the algorithm divides the
vehicle view into sections and if vehicle can find a way through straight section, the
algorithm omits the sensor fusion analysis from other modules. Further, the obstacle
search logic stores all the detected obstacles information that are within the range
of 125 m from the current vehicle position. Therefore, the MPC algorithm consider
this information to formulate control commands and thus it is unlikely to fail even at
constant speed complex obstacle scenarios [25]. However, this might cause vehicle to
take longer paths and slower speeds for extended period.
At every iteration, the MPC generates optimal trajectory into the future that would

75

www.manaraa.com

avoid both obstacles and bumps in the vehicle view region. From this optimal control
trajectory, only the first sample of control commands are executed for the vehicle nav-
igation and remaining control trajectory would be used for initialization of prediction
matrix for next iteration. A new trajectory would be updated in next iteration, which
consider the vehicle current updated states and obstacles information from sensors.
The algorithm considers 0.3 sec as update period and further executes the control
commands for 0.3 sec as well. However, the control commands may not be constant
during this execution time period and the sampling time for control command is 0.05
sec.

3.5.1.1 Simulation-1 results

As mentioned, the first three simulations in this section are made for assessing the
algorithm performance for both constant speed and variable speed cases as shown in
Fig. 3.8 to Fig. 3.13. In the first two scenarios, both constant and variable speed
conditions reached the target position by meeting all vehicle safety constraints. In
this, the first scenario is relatively simple in terms of obstacle field complexity is shown
in Fig. 3.8. From the Fig. 3.8(c) it can be clearly observed that the variable speed
condition gradually increases the vehicle speed to maximum limit when vehicle is free
from obstacle field and reaches target location 3.5 sec earlier than constant speed
condition. This makes it about 7% faster compared to constant speed condition is
shown in Fig. 3.8(b). Though the constant speed problem formulation is relatively
simple, the variable speed condition exploits the full range powertrain capability and
thus reaches the target location as soon as possible.

3.5.1.2 Simulation-2 results

In the second scenario, the vehicle passes through relatively moderate obstacle field
and both constant speed and variable speed logic reaches target location safely with
slightly different paths is shown in Fig. 3.10. In this scenario, though the constant
speed condition reaches faster than variable speed condition, the path taken by vari-
able speed is optimal path. Further, variable speed condition uses obstacle search
logic to vary the vehicle speed when it detects obstacles in the vehicle view region
and it assign more weightage towards safety than reaching the target location faster.
However as mentioned, when the vehicle is not encountered with obstacles the vehicle
starts accelerating and reaches to its maximum speed and in the long run variable
speed condition could reach faster than constant speed condition. More importantly,

76

www.manaraa.com

0 100 200
X, (m)

0

50

100

150

200

250

Y
, (

m
)

(a)

V
x
:Var______

V
x
:Const_ _ _ _

Start

Target

0 10 20
Time (s)

-2

0

2

f (
D

eg
)

(b)
Vx:Var____
Vx:Const_ _ _

0 10 20
Time (s)

18

20

22

24

26

28

V
x (

m
/s

)

(c)
Vx:Var____
Vx:Const_ _ _

Figure 3.8: simulation-1 results, with relatively simple obstacle field: (a)
Path followed by AGV for both variable and constant speed scenarios;(b)
Steering commands generated by MPC for variable and constant speed sce-
narios; (c) Speed profiles for variable and constant speed scenarios.

0 5 10 15
Time (s)

0

2

4

6

8

10

F
z (

kN
)

(d)

0 10 20
Time (s)

0

2

4

6

8

10

F
z (

kN
)

(e)

Figure 3.9: simulation-1 results: (d) Wheel lift-off constraint for variable
speed scenario;(e) Wheel lift off constraint for constant speed scenario.

the systematic formulation of vehicle speed control not only avoids conservative op-
eration of powertrain but also passes through complex obstacle field safely without
collision. However, the constant speed approach fails to meet vehicle safety require-
ments when it passes through complex field and it is explained in scenario 3.

77

www.manaraa.com

0 100 200
X, (m)

0

50

100

150

200

250

Y
, (

m
)

(a)

V
x
:Var______

V
x
:Const_ _ _ _

Start

Target

0 10 20 30
Time (s)

-5

0

5

f (
D

eg
)

(b)

Vx:Var____
Vx:Const_ _ _

0 10 20 30
Time (s)

10

15

20

V
x (

m
/s

)

(c)

Vx:Var____
Vx:Const_ _ _

Figure 3.10: simulation-2 results, with relatively moderate obstacle field:
(a) Path followed by AGV for both variable and constant speed scenarios;(b)
Steering commands generated by MPC for variable and constant speed sce-
narios; (c) Speed profiles for variable and constant speed scenarios.

0 10 20 30
Time (s)

0

2

4

6

8

10

12

F
z (

kN
)

(d)

0 10 20
Time (s)

0

2

4

6

8

10

F
z (

kN
)

(e)

Figure 3.11: simulation-2 results: (d) Wheel lift-off constraint for variable
speed scenario;(e) Wheel lift off constraint for constant speed scenario.

3.5.1.3 Simulation-3 results

The third set of simulations are made for the vehicle to pass through complex obstacle
field, in which vehicle is trapped into enclosed surroundings and creates a necessary
condition to reduce the vehicle speed to avoid obstacle field is shown in Fig. 3.12.

78

www.manaraa.com

0 100 200
X, (m)

0

50

100

150

200

250

Y
, (

m
)

(a)

V
x
:Var______

V
x
:Const_ _ _ _

Start

Target

0 10 20
Time (s)

-5

0

5

f (
D

eg
)

(b)

Vx:Var____
Vx:Const_ _ _

0 10 20
Time (s)

0

10

20

V
x (

m
/s

)

(c)

Vx:Var____
Vx:Const_ _ _

Figure 3.12: simulation-3 results, with relatively complex obstacle field:
(a) Path followed by AGV for both variable and constant speed scenarios;
however, the constant speed scenario fails to reach target location safely.
(b) Steering commands generated by MPC for variable and constant speed
scenarios; (c) Speed profiles for variable and constant speed scenarios.

From the simulation results, it is confirmed that the constant speed condition could
not reach target location and crashes into obstacle field at 7.9 sec is shown in Fig.
3.12(a) to (c). on the otherhand, the variable speed condition approaches obstacle
field with caution by reducing the vehicle speed according to the obstacle distance and
accelerates as soon as vehicle finds obstacle free region. Here, vehicle speed during
the trapped region reaches to about 6 m/s and maneuvers the vehicle in obstacle-free
region in controlled manner. From Fig. 3.13, it can be observed that the vertical load
on all four tires is more than specified threshold value and thus vehicle dynamical
safety is ensured for the whole trip. Here black dotted line indicates the specified
minimum threshold load for the vehicle dynamical safety.

3.5.1.4 Simulation-4 results

These simulations incorporates road grade information to the existing obstacle
field and assess the performance of the obstacle-grade avoidance algorithm for

79

www.manaraa.com

0 10 20
Time (s)

0

2

4

6

8

10

F
z (

kN
)

(d)

0 10 20
Time (s)

0

2

4

6

8

10

F
z (

kN
)

(e)

Figure 3.13: simulation-3 results: (d) Wheel lift-off constraint for variable
speed scenario;(e) Wheel lift off constraint for constant speed scenario.

off-road applications. Three scenarios have been considered to study the algorithm
performance and in which first set of simulations includes moderate obstacle field
along with different road grade conditions. Second set of simulations include
relatively complex obstacle field along with road grades and final set of simulations
are made for demonstrating the algorithm robustness to the vehicle state estimation
uncertainty with the existing second scenario obstacle field is shown in Fig. 3.14
to Fig. 3.19 Further, all of these obstacles and road grades are included in such a
manner that they would obstruct the vehicle optimal path and algorithm has to
reach target location by meeting all vehicle safety constraints with collision free and
yet reach the target as soon as possible. i.e., vehicle has to avoid obstacles but it
is acceptable to pass through grade regions to reach the target with optimal path.
However, during this optimal path, vehicle need to ensure vehicle dynamical safety
constraint by meeting minimum threshold load on all four wheels. As mentioned, the
road grade can make substantial longitudinal load transfer and thus it is important
to consider all four wheels for meeting the vehicle dynamical safety.
As mentioned, the fourth set of simulations in this section are made for the vehicle
to pass through relatively moderate obstacle field with grades along the path is
shown in Fig. 3.14(a) From the simulation results, it is confirmed that, the vehicle
avoids all the obstacles and tries to move away from bumps or steep regions on
the road. As mentioned, the road-grades in the path mimic real-world grades and
the regions between contour lines are interpolated. In the structured traffic lane
road conditions, the road grade varies between 0 to 6.8 deg and therefore, the
vehicle considers these grade conditions are safe regions and the vehicle tries to go
through these blue regions. Further, the road grade that is more than critical value
is considered as obstacle field and vehicle need to avoid these regions. These regions
are colored with dark yellow. From Fig. 3.14(a), it can be observed that, the vehicle
passes through blue puddles upto [150m,125m] zone and after this vehicle encounters
with both obstacle and steep region. The vehicle need to satisfy obstacle avoidance
as well as optimal path condition and thus vehicle tries to pass through away from

80

www.manaraa.com

(a)

Start

Target

0 100 200 300
X, (m)

0

50

100

150

200

250

300

Y
, (

m
)

2

4

6

8

10

12

14

Figure 3.14: simulation-4 results, with relatively moderate obstacle-road
grade field: (a) Path followed by AGV, which avoids both obstacles and road
grade regions.

obstacle and yet reaches the target location as soon as possible. This condition
shows that, vehicle can pass through steep regions to meet optimal path condition.
However, vehicle has to ensure safety by meeting the minimum safety constraint
load of 995N at all the times during the navigation is shown in Fig. 3.14(e). The
corresponding vehicle speed, heading and steering wheel commands are provided in
Fig. 3.14(b) to Fig. 3.14(d).

3.5.1.5 Simulation-5 results

The fifth set of simulations are made for running the vehicle through lengthy obstacles
as well as randomly distributed 30 individual obstacles along with bumps/road grade
on the road is shown in Fig. 3.16(a). From the result, it can be seen that the vehicle
reaches target point by avoiding both obstacles and bumps that are on the way by
meeting the vehicle safety constraints at each iteration. However, at [200m,150m]

81

www.manaraa.com

0 10 20
Time (s)

10

15

20

V
x (

m
/s

)

(b)

0 10 20
Time (s)

-10

-5

0

5

f (
D

eg
)

(c)

0 10 20
Time (s)

0

5

10

F
z (

kN
)

(d)

0 10 20
Time (s)

20

40

60

80

 (
D

eg
)

(e)

Figure 3.15: simulation-4 results: (b) and (c) Speed and Steering com-
mands generated by MPC for obstacle-road grade avoidance; (d) Wheel lift-
off constraint and vehicle heading variation for obstacle-road grade avoid-
ance.

location, the vehicle seem passing through the steep region. This might be due to
more weightage towards optimal path than steep region avoidance and vehicle does
not find obstacle due to grade regions in the encountered grade puddle at this location.
This makes vehicle to pass through risky regions and reach the target location as soon
as possible. Therefore, the unnecessary acceleration and deceleration scenarios can
be avoided during the navigation is shown if Fig.3.17(b). However, during the process
vehicle has to ensure the dynamical safety and it is confirmed through Fig. 3.16(a)
to 3.16(e). This scenario indicates that the vehicle can pass through moderate steep
regions to avoid obstacles and meeting optimal path by ensuring the dynamical safety.

3.5.1.6 Simulation-6 results

As mentioned, the final set of simulations in this section is made for studying the
inherent robustness of MPC problem formulation for avoiding obstacles and steep
regions with vehicle position uncertainty. However, the uncertainty values are con-
sidered to mimic the real-world sensor measurements. In general, the typical GPS
sensor with base station capability, would have the error of ±0.3m in vehicle position
estimation. Therefore, the Gaussian white noise with the magnitude of 0.3 m error

82

www.manaraa.com

(a)

Start

Target

0 100 200 300
X, (m)

0

50

100

150

200

250

300

Y
, (

m
)

2

4

6

8

10

12

14

Figure 3.16: simulation-5 results, with relatively complex obstacle-road
grade field: (a) Path followed by AGV, which avoids both individual and
lengthy obstacles and road grade regions; however, the vehicle can still pass
though moderate road grade regions to meet safety criteria and optimal path.

is introduced into the system. The typical inertial measurement sensor (IMU) unit
provide measurements with the uncertainty of ±2.5◦ and same is applied to the vehi-
cle heading uncertainty in terms of Gaussian white noise. Further, ±0.1m/s error in
vehicle speed and ±5cm error in obstacle distance is applied. The total of 30 simu-
lations are made with the previous scenario-2 obstacle field given in Fig. 3.14(a). In
all of the 30 runs, the vehicle avoids both obstacles and bumps but followed different
routes to reach the target point. However, this is acceptable to meet the vehicle
safety and obstacle minimum distance constraints and reach the target point as soon
as possible. From Fig. 3.18(a), it is observed that, some of the simulations the vehicle
reduces its speed to minimum of 5m/s as it approaches the obstacle field region, and
accelerates as soon as it finds obstacle free region to reach target point with optimal
path. Further, in all of these conditions, the vehicle ensures the dynamical safety
by meeting the minimum specified vertical load on all four tires is shown in Fig.
3.18(d). From the above 30 simulations, it is confirmed that the MPC formulation
for obstacle-grade avoidance logic is robust enough for considered uncertainty limits.
However, for more significant uncertainty the algorithm may not be robust and may

83

www.manaraa.com

0 10 20 30
Time (s)

10

15

20

V
x (

m
/s

)

(b)

0 10 20 30
Time (s)

-5

0

5

f (
D

eg
)

(c)

0 10 20 30
Time (s)

0

5

10

F
z (

kN
)

(d)

0 10 20 30
Time (s)

100

200

300

 (
D

eg
)

(e)

Figure 3.17: simulation-5 results: (b) and (c) Speed and Steering com-
mands generated by MPC for complex obstacle-road grade field avoid-
ance; (d) Wheel lift-off constraint and vehicle heading variation for complex
obstacle-road grade field avoidance.

be required to develop a robustness scheme and it is left for further research work.

3.5.2 Results on moving obstacle avoidance

This section incorporates moving obstacles to the existing section.3.5.1. obstacle field,
and it is mainly divided into two scenarios. The first scenario considers the stationary
obstacle field that mimics the scenario-2 in section-1 and adds three moving obstacles
at different locations with different angle of shoot. This scenario consider the road
is flat and no contour plot for grade is included in the plots. Similarly, the second
scenario consider the obstacle field, that is similar to scenario-2 in section-2 and it
includes road grade, three moving obstacles at different locations with different angle
of shoot. The location and angle of shoot for each moving obstacle is considered in
such a way that the vehicle gets trapped into moving obstacles path and they would
make collision, if vehicle follows the existing stationary obstacle path. However, in
both of the above scenarios, the moving obstacle algorithm could able to deal with
both stationary and moving obstacles and reached the target location without collision
and it is detailed in the following sections.

84

www.manaraa.com

(a)

Start

Target

0 100 200 300
X, (m)

0

50

100

150

200

250

300

Y
, (

m
)

2

4

6

8

10

12

14

Figure 3.18: simulation-6 results for uncertainty analysis with relatively
moderate obstacle-road grade field: (a) Path followed by AGV with thirty
simulations, in which all simulations avoid both obstacles and road grade
regions.

3.5.2.1 Simulation-1 results

As mentioned, the scenario-1 considers three moving obstacles with two lengthy sta-
tionary obstacles in the path is shown in Fig. 3.20(a). The Table. 3.3, provide the
values for three moving obstacle initial states and their corresponding angle of shoot
and speed. The black line with arrow in Fig. 3.20(a) indicates the direction and
path followed by the moving obstacles during the simulation. From Fig. 3.10(a) and
Fig. 3.20(a), it can be clearly observed that, for the similar stationary obstacle field
the vehicle should have followed the section-1 scenario-2 route but made different
route due to the interference of moving obstacles. The vehicle made major change
in route/path at about [110m, 110m] due to the first and second moving obstacles
interference and it is detailed in Fig. 3.22. The Fig. 3.22, provide series of nine
plots that captures the major changes in vehicle path due to moving obstacles. Each
plot or frame in the figure defines one MPC iteration and the plots are referred in
sequence from 1 to 9 from left upper corner to lower right corner respectively. In the

85

www.manaraa.com

0 10 20 30
Time (s)

5

10

15

20

25

V
x (

m
/s

)

(b)

0 10 20 30
Time (s)

-20

-10

0

10

f (
D

eg
)

(c)

0 5 10 15 20 25 30
Time (s)

0

5

10

F
z (

kN
)

(d)

Figure 3.19: simulation-6 results: (b) and (c) Speed and Steering com-
mands generated by MPC for thirty corresponding simulations in (a); (d)
Wheel lift-off constraint for thirty corresponding simulations in (a), and all
simulations meet the safety requirements.

Table 3.3

Moving obstacle initial state values for the simulation

Parameter Value Units

[x
(1)
mobsinit

, y
(1)
mobsinit

] [200,150] m

v
(1)
mobs 10 m/s

ψ
(1)
mobs (π + π/18) rad

[x
(2)
mobsinit

, y
(2)
mobsinit

] [30,200] m

v
(2)
mobs 7 m/s

ψ
(2)
mobs (2π − π/4) rad

[x
(3)
mobsinit

, y
(3)
mobsinit

] [100,250] m

v
(3)
mobs 10 m/s

ψ
(3)
mobs (3π/2+pi/36) rad

first five frames/plots, the vehicle detects the lengthy obstacle and tries to avoid with
minimal distance. As mentioned earlier, the algorithm stores obstacle information,
when it detects obstacles in the vehicle view region and deletes once the vehicle move
125 m away from it. Here, the detected obstacles are shown in red color and blue
color dots indicates the undetected obstacles. Until frame 5, the vehicle follows same
path as stationary obstacle path. However, at frame 6 algorithm detected the first
moving obstacle and it estimated the moving obstacle speed and its future position

86

www.manaraa.com

0 50 100 150 200 250
X, (m)

0

50

100

150

200

250

Y
, (

m
)

(a)

Start

Target

Figure 3.20: simulation-1 results for moving obstacle analysis with rela-
tively moderate obstacle field: (a) Path followed by AGV, which avoids both
moving and stationary obstacles.

predictions. At this point, the algorithm makes vehicle state predictions that must
be avoided with any of the obstacle predictions. i.e., each vehicle state prediction has
to maintain a minimum specified distance from all moving obstacle state predictions
to avoid the collision. This minimum distance constraint averts the vehicle path to-
wards left direction is shown in Fig. 3.22 (frame 6). At this point, the corresponding
vehicle speed reduces to 14 m/s to ensure dynamical safety. Further, from frame 7
to 9, the algorithm detects second moving obstacle that is in vehicle dangerous zone.
The dangerous zone for moving obstacles is defined in previous section.3.3. From
frames 7 to 9, the second moving obstacle persists the vehicle to take further left turn
for longer periods to avoid the future predictions collision. However, this further left
path increases the target distance and vehicle would always tend to make right turn
to reach target as soon as possible with optimal path. This behavior can be explained
in the following session using Fig. 3.23. The Fig. 3.23 has made with series of nine
events that started from 125sec, in which another major path change decision has
been made. As mentioned, the vehicle would always tend to follow optimal path and
tries to get back as soon as it finds obstacle free region. Therefore, from frame-1 to
frame-3 in Fig. 3.23, the MPC algorithm commands vehicle to take right turn while
it was navigating towards left direction. However, in frame-4 the algorithm again

87

www.manaraa.com

0 5 10
Time (s)

15

20

25

V
x (

m
/s

)

(b)

0 5 10
Time (s)

-6
-4
-2
0
2

f (
D

eg
)

(c)

0 2 4 6 8 10 12 14 16 18
Time (s)

0

5

10

F
z (

kN
)

(d)

Figure 3.21: simulation-1 results for moving obstacle analysis: (b) and (c)
Speed and Steering commands generated by MPC for avoiding both moving
and stationary obstacles (d) Wheel lift-off constraints to meet the safety
requirements.

detects moving obstacle and algorithm reroute the path, that would avoid all three
moving obstacles by encompassing them under the vehicle state predictions is shown
in frames 5 to 9. Here, during the frame-4, the moving obstacle state predictions are
invisible due to its low prediction sampling time and low speed. i.e., the obstacle
predictions are not defined for the fixed distance instead they are defined based on
the prediction time stamp used in the MPC formulation. This logic has already been
explained in previous section.3.3. In the frames 5 to 9, the top moving obstacles
are moving downwards and bottom moving obstacle is moving upwards. However,
all these moving obstacles are clearly out of the vehicle rerouted optimal path and
therefore, vehicle reached final destination using this rerouted path as shown in Fig.
3.20(a). Nonetheless, the vehicle ensures vehicle dynamical safety at all times during
the navigation by keeping vertical load on all tires more than specified value is shown
in Fig. 3.20(d). The corresponding steering angle and vehicle speed is provided in
Fig. 3.20(b) and Fig. 3.20(c).

3.5.2.2 Simulation-2 results

This section of results is extension to the previous moving obstacle section-1 and
here more complicated obstacle field is added to verify the algorithm performance for

88

www.manaraa.com

Figure 3.22: Series of nine sequential events in moving obstacle simulation-
1 results for observing the first major change in AGV path; here, each even-
t/frame represent one MPC iteration/sample period and is numbered from
top left to bottom right.

moving obstacle avoidance with difficult situations. The stationary obstacle field is
similar to the scenario-2 in section-2 and the moving obstacle states are considered
as same as previous section given in Table. 3.3. Therefore, the vehicle should follow
the optimal path given Fig. 3.16(a). However, from Fig. 3.24(a), the major path
change has taken at about 4.2 sec and 4.8 sec due to the interference of moving
obstacles and the corresponding detailed analysis have been provided in following
sections. Fig. 3.26. is made for capturing the initial major change from the
stationary obstacle optimal path by analyzing the moving obstacle states. Similar to
the previous section, here the Fig. 3.26, is made with nine plots starting at 4.2 sec
to observe the series of events before and after the moving obstacle interference with
vehicle states. From frame 1 to 6, the algorithm detects the first moving obstacle and
commands towards left to avoid collision. However, during this process, the vehicle
passes through moderate steep regions by ensuring the vehicle dynamical safety. This
is acceptable and necessary to meet vehicle safety constraints than passing through
the steep regions. Once the vehicle is navigated out of first moving obstacle region,
the algorithm commands towards optimal path by taking right turn in the subsequent
iterations. However, the second obstacle from top left corner interfere with the vehicle
path and maneuvers further left and this phenomenon is explained in detail in the

89

www.manaraa.com

Figure 3.23: Series of nine sequential events in moving obstacle simulation-
1 results for observing the second major change in AGV path.

following section. Here, the green points indicates the vehicle predictions during the
moving obstacle detection process, red points indicates the detected obstacles in the
LIDAR view region and blue squares indicate the undetected or hidden obstacles from
vehicle path. The Fig. 3.27 shows the above mentioned second critical change in path
due to moving obstacles. In the first frame, the vehicle is expected to move towards
stationary optimal path to reach the target as soon as possible. However, during frame
2 to 6, the vehicle encounters with two moving obstacles that make vehicle to take
further left turn to avoid collision. Here, it is important to note that, the stationary
obstacles do not have state predictions and path change due to stationary obstacle
is minimal compared to moving obstacle avoidance. i.e., safe region that covers for
moving obstacle is lager than stationary obstacles. Therefore, the vehicle reacts to
the moving obstacles from farther distance than stationary obstacles. Further, all
the above scenarios are dynamically safe and collision free is shown in Fig. 3.24 (d).
Finally, from the above simulation results, it is confirmed that the MPC formulation
could able to successfully avoid both moving and stationary obstacles along with
moderate to steep regions in the more complex obstacle fields. However, there are
few exceptions and assumptions have been in the study and these are detailed in the
below discussion section.

90

www.manaraa.com

Figure 3.24: simulation-2 results for moving obstacle analysis with rela-
tively complex obstacle field: (a) Path followed by AGV, which avoids both
moving and stationary obstacles and road grade regions.

3.6 Discussion

The present study made several assumptions while developing the NMPC algorithm
for navigating AGV safely and quickly. The effect of each of these assumptions and
possible relaxations are explained in the following sections,

assumption-1:

In stationary obstacle detection process, it is assumed that the LIDAR can detect all
obstacles in the given range. In reality, the obstacles can be with different heights
and shapes and one LIDAR unit can not provide whole obstacles information for the
defined LIDAR view region. Therefore, to obtain complete obstacle information, a
fusion algorithm needs to be developed between multiple LIDAR sensors or a 3D
LIDAR module should be used. This being said, the algorithm doe not react for
the obstacles that are not recognised by the LIDAR module. Further, the LIDAR

91

www.manaraa.com

0 5 10
Time (s)

10

15

20

V
x (

m
/s

)

(b)

0 5 10
Time (s)

-2
0
2
4
6
8

f (
D

eg
)

(c)

0 2 4 6 8 10 12 14 16
Time (s)

0

5

10

F
z (

kN
)

(d)

Figure 3.25: simulation-2 results for moving obstacle analysis: (b) and
(c) Speed and Steering commands generated by MPC for the corresponding
moving obstacle simulation-2 field scenario (d) Wheel lift-off constraints to
meet the safety requirements.

module should provide obstacle states in terms of position (xom, yom) than distance
alone. This may be possible to obtain through Leddar VU8 sensor [51], which can
provide obstacle distance and angle of segment, in which the corresponding obstacle
is identified.

assumption-2:

The algorithm assumes that, it obtains road grade information in terms of road grade
indices in longitudinal and lateral directions for the defined LIDAR view region.
The definition of road grade indices is defined in obstacle-grade avoidance process
section and it is possible to obtain this data through appropriate location based GPS
mapped data. The assumption to calculate θx and θy for the LIDAR view region best
suits for the present simulation. However, the more detailed analysis by considering
the averaged θx and θy at each node for the predicted LIDAR region and fusing
these grade indices with state dynamics model would provide more control on steep
regions. This increases computational burden on simulation and it is left for the
further work. These GPS mapped data can be processed in off-line mode to obtain
the corresponding target location terrain, soil and grade information. Therefore, with
minor modifications the algorithm can easily be extended for different soil,terrain and

92

www.manaraa.com

Figure 3.26: Series of nine sequential events in moving obstacle simulation-
2 results for observing the first major change in AGV path; here, each even-
t/frame represent one MPC iteration/sample period and is numbered from
top left to bottom right.

weather conditions too. This left for future research work.

93

www.manaraa.com

Figure 3.27: Series of nine sequential events in moving obstacle simulation-
2 results for observing the second major change in AGV path.

assumption-3:

In the present study, it is assumed that the vehicle parameters are constant and its
state estimations are exact. However, the developed MPC can handle considerable
uncertainty in the vehicle states and the results have been demonstrated with thirty
simulations in section.3.5.1.6. However, this is possible because of inherent ability of
MPC controller to handle non-linear control systems and thus typical present feedback
control system be handled for a limited uncertainty. This implies that, the present

94

www.manaraa.com

algorithm may not be robust enough for more significant uncertainty in the system.
Further research needs to made for improving the system robustness and a robustness
scheme can be incorporated to the present OCP formulation and it is left for the future
work.

assumption-4:

In the present study moving obstacle detection process is made possible through
the assumption that, the LIDAR sensors used for moving obstacle analysis operates
n times faster than MPC iteration or sample time period. In reality, the typical
update rate for LIDAR sensors can easily meet this requirement and the assumption
of having n measurements in one MPC iteration is reasonable. However, there are
other sensors including Radars can detect moving obstacles and provide its position,
speed and angle shoot. The algorithm operates in parallel to the sensor modules and
therefore the obstacle and grade map processing can be done in off-line to process its
information. Further research needs to be made for training the algorithm for various
obstacle fields and thus improving the algorithm speed in real time. Finally, Further,
with the exception of moving obstacle analysis, the developed MATLAB code is able
to execute in 0.305 sec on 2.8GHz intel(R) Core(TM) i5-7440 HQ processor.

95

www.manaraa.com

www.manaraa.com

Chapter 4

studies on simulation and real time
implementation of LQG controller

4.1 Introduction

The demand for autonomous navigation is increasing and major car manufacturers
are looking for robust and safe operation of vehicle. However, the localisation of the
vehicle is a challenging factor in making robust autonomous controller. There are
already some technologies exist in the market including advanced driver assistance
system (ADAS) and Adaptive cruise control [57], [58]. In the present technology,
the cost for measuring the accurate vehicle position has been reduced. However,
the noise in sensors and handling the update rates are still challenging and require
through study on each sensor. The present work consider each sensor associated
with autonomous navigation and incorporate their noise properties to improve the
accuracy of vehicle state estimates.
Prior studies have made for developing tracking algorithms including geometry based
Stanely method [59] developed by DARPA, Pure pursuit method [60, 61, 62] and
fuzzy based algorithms [63]. However, much of these methods are restricted to
single input and single output systems, and thus require lot of effort in tuning gains.
Further, the noise in various sensors affect the tracking performance and tuning the
controller gains for each parameter would become cumbersome. However, developing
model based controller can overcome these drawbacks. This is because, the model
approximates the real vehicle behaviour and tuning the controller gains becomes easy
[64]. Extensive work have made on these model based controllers [65, 66, 67] and
effort have been made to develop accurate vehicle models including bi-cycle kinematic

97

www.manaraa.com

and dynamic models. However, the effort on analysing the tracking characteristics
including sensor noise and errors in state estimations were not considered.
The main objective in the present work is to design a full-sate Linear Quadratic
Gaussian controller that would consider tracking performance and each sensor noise
associated with it. Further, the detailed explanation of each sensor interface with
controller is provided. During the controller development various filters are designed
including low pass filter, Kalman filter. The vehicle heading values from the IMU
sensor are processed to alleviate the magnetic effects on autonomous navigation and
it is detailed in Chapter.2.
The remaining sections in the chapter are as follows: section 2 provide methodology
for controller, section-3 provide experimental set up. This includes interfacing the
various sensors with controller, vehicle actuators and test conditions used for the
analysis. Section-4 provide the simulation and implementation of LQG controller on
1/5th truck has been provided.

4.2 Methodology

The present study consider implementing LQG controller on 1/5th truck for tracking
the given target map. The target map consists of series of way points, which are
required to be connected through continuous line. In the present work, cubic spline fit
has been used to connect way-points. The Cubic spline fit curvature is most suitable
for making real road turning paths including 90 ◦ turn, round about circle and S-map
path. The detailed pseudo code for developing continuous desired path explained in
later sessions. In order to obtain robust controller gain (Kgain) and performance, it is
important to mimic the real vehicle with the model equations. Further, the present
work uses Kalman observer to make the best estimates from sensor measurements and
vehicle model. The model developed in this study is restricted to kinematic bi-cycle
model, which is sufficient for capturing the 1/5th truck lateral dynamics is shown in
Fig. 4.1. The controller outputs the steering angle that would track the path with
minimum cross track error.

4.2.1 Vehicle Kinematics model

The lateral kinematics model makes following assumptions including
1. Fuses two front wheels into one single front wheel and two rear wheels into one
single rear wheel.

98

www.manaraa.com

Figure 4.1: Vehicle kinematics bi-cycle model for LQG controller

2. Assuming front wheel steering alone δr = 0
3. slip angles at both wheels are zero.
From the above assumptions and Fig .4.1, the kinematic model becomes [52]

Ẋ = vx cos(ψ) (4.1)

Ẏ = vx sin(ψ) (4.2)

ψ̇ =
V

L
tan(δf) (4.3)

Here vx represents the vehicle longitudinal speed in m/s, ψ represents vehicle heading
measured in global coordinates. The steering angle δf is further calculated from
averaging the inner and outer wheel radius of front wheels [52]. From the equations
4.1- (4.3), the kinematic model equations are still in non-linear form and it is required
to convert them into linear form for the controller application. Further, it is important
to incorporate target path coordinates in the problem formulation for making effective
path tracking controller [62]. Therefore, developing model with respect to target
path and linearising it along equilibrium target points in terms of cross track error
and heading error produce better tracking performance results. Fig. 4.2. provide the
schematic of kinematic model in desired path coordinates and the kinematic state
model with respect to equilibrium path coordinates can be written as follows,⎡

⎢⎢⎣
efa
˙efa
θe
θ̇e

⎤
⎥⎥⎦
k+1

=

⎡
⎢⎢⎣
1 dt 0 0
0 0 vx 0
0 0 1 dt
0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
efa
˙efa
θe
θ̇e

⎤
⎥⎥⎦
k

+

⎡
⎢⎢⎣

0
0
0

vx/L

⎤
⎥⎥⎦ δf (4.4)

where,

A =

⎡
⎢⎢⎣
1 dt 0 0
0 0 vx 0
0 0 1 dt
0 0 0 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0
0
0

vx/L

⎤
⎥⎥⎦ , C =

[
1 0 1 0

]

99

www.manaraa.com

Figure 4.2: Vehicle kinematic model along desired path coordinates

Here, dt is time step for each iteration efa is cross track error in meters, θe is heading
error in rad, ˙efa is rate of change of cross track error in m/s and θ̇e represents rate
of change of heading error with respect to the equilibrium target point.

4.2.2 LQG controller operation

The Fig.4.3. shows the schematic of LQG architecture and it includes Kalman filter
for observing the vehicle states and target map in terms of waypoints is given as
input to the system. The target waypoints are processed using Cubic spline before
entering into the controller loop. Further, the Hardware unit in the schematic has
been detailed with the fritzing circuit diagram is shown in Fig. 4.4. While developing
the LQG controller, it is important to check the stability of the system model and
it can be verified through the rank of observability and controllability matrices. The

100

www.manaraa.com

Figure 4.3: Schematic of LQG controller architecture

observability and controllability matrices can be defined as follows,
Controllability =

[
A AB A2B . . An−1B

]
(4.5)

Observability =

⎡
⎢⎢⎢⎢⎢⎢⎣

C
CA
CA2

.

.
CAn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.6)

Here, the rank of each matrix is four and matches with size of states (n) in the above
problem to make sure the developed model is fully controllable and observable.
Once the controllability and observability have been verified, the LQR quadratic cost
function along with constraints using control inputs and states can be written as,

min
Z,U

J = ZT .Q.Z + UT .R.U (4.7)

s.t.

Ż = D[Z,U] (4.8)

Zmin(t) ≤ Z(t) ≤ Zmax(t) (4.9)

Umin(t) ≤ U(t) ≤ Umax(t) (4.10)

E [Z(t),Ztarget] ≤ 0 (4.11)

101

www.manaraa.com

Here, Z represents the system states and U indicates the system control inputs.
Further, the equation (4.11) provide the end constraint for stopping the vehicle, when
it reached within the region of final waypoint and equation 4.8 represents the system
model given in the above section.4.2.1. The above cost function along with constraints
can be solved using Discrete Algebraic-Racatti Equation (DARE) in the following
manner,

Kgain = (B−1.ZDARE.B +R)−1(BT .ZDARE.A) (4.12)

Here, ZDARE is calculated as with a convergence loop for the maximum number
of iterations In the present study, the vehicle has been equipped with GPS base

Algorithm 3 Solving Discrete time Algebraic Raccati Equation

for i = 1 : max number of iterations do
ZDAREi+1

= AT .ZDAREi
.A− (AT .ZDAREi

.B)(R+BTZDAREi
B)(BTZDAREi

A)+Q

if abs(ZDAREi+1
− ZDAREi

) ≤ Convergencetolerance then
break

end if
end for

station, IMU, speed, and steering wheel sensors to read vehicle states. The below
experimental set up section provide detailed explanation on each sensor interface with
Embedded system. Further, the controller interface with vehicle actuators including
DC powertrain motor and steering servo unit is also explained.

4.3 Experimental set-up

The schematic of experimental set up with hardware unit used in the path tracking
analysis is shown in Fig.4.4. In the present work, 1/5th scale truck has been used for
implementing the controller. The following sections provide detailed explanation on
interfacing the vehicle with sensors and embedded systems.

4.3.1 position measurements set-up

In the present work, the Inertial Sense EVB-2 board has been used for measuring
the vehicle position. This module has two GPS units, in which one acts like rover
and other unit acts like base station. Both units are communicated each other by on

102

www.manaraa.com

Figure 4.4: Fritzing circuit diagram for sensor interface with Beagle Bone
Black Embedded system

board 915MHz X-bee radio for RTK (Real Time Kinematics) corrections. Here, the
base station unit be mounted at fixed location and rover unit be mounted on vehicle.
The rover unit communicates with base station through above mentioned radio for
receiving the real-time position corrections from the base station unit is shown in
Fig.4.5.
The present EVB-2 board provide the position measurements within the error of
±0.35m for the given location. However, when the distance between rover and base
station goes beyond 2.5km, the accuracy in position varies due to the limitation on
radio communication. Therefore, for all of the experiments, it is made sure that, the
GPS base station is fixed within the region of 2.5km is shown in Fig .4.5. Further,
the rover unit be connected to Embedded system through serial communication.The
embedded system used in the present work is a 1.2 GHz Linux based Wireless Beagle
Bone Black RevC board and it has various GPIO interface pins for communicating
with sensors. The Embedded system has 96 pins with four UART serial pins for
communicating with GPS and IMU sensors. Here, IMU provides vehicle heading
measurements and are explained in the following section.

103

www.manaraa.com

Figure 4.5: Radio communication between GPS base station and rover

4.3.2 Vehicle heading measurements

The UM7 inertial measurement Unit (IMU) has been used for estimating the vehicle
orientation in global coordinates. The module consists of three axis gyro, accelerom-
eter and magnetometer for providing the vehicle roll,yaw and pitch. However, the
vehicle orientation can either be represented in Euler angles or Quaternions. In the
present study, Quaternions have been used to estimate the vehicle orientation and to
avoid the gimbol lock [16]. Similar to GPS module, the IMU interface with embed-
ded system using UART serial pins. The update rate for the module is 80 hz and
for the brevity, the vehicle heading estimations from quaternions is provided with the
following calculations,

heading = arctan 2(numerator, denominator) (4.13)

Here,
numerator = 2(q0.q3 + q1.q2)

denominator = q20 + q21 − q22 − q23

104

www.manaraa.com

Figure 4.6: Speed sensor mounting on 1/5th truck

More details on Quaternions (q0, q1, q2, q3) and fusion of vehicle kinematics for alle-
viating the magnetic effects on heading is given in Chapter.2. This way, the vehicle
heading and position measurements are made using base station and IMU sensors
and corresponding sensor properties have been provided in the Appendix.A .

4.3.3 Vehicle speed and steering measurements

The speed measurement set up consists of three major parts including Metallic object
proximity switch sensor, acrylic circular plate and metallic bolts. The bolts are
attached to the circular plate at a known radius and the circular plate center is
mounted on the vehicle drive shaft. The metallic speed sensor is fixed on the vehicle
chassis on a certain height that would face the metallic bolt on acrylic plate is shown
in Fig. 4.6. The speed sensor sense the bolt when it acrylic plate is rotated and
the time period between each sensor output value provide speed measurement. The
bolt comes within a distance of 1-2.5 mm with speed sensor to get recognised and
the time duration between each bolt be measured with separate embedded system
(Due) to process speed data. The processed speed data from Due is communicated
onto Beagle bone black through UART serial communication. The baud rate used
for the communication is 115200 and a fixed gear ratio has been used for converting
the drive shaft speed to wheel speed is given in equation 4.14.

vx = factor ∗ ωds (4.14)

105

www.manaraa.com

Figure 4.7: Steering sensor mounting on 1/5th truck (Here, Speed sensor
was not yet installed on vehicle)

Here, the bolt is mounted on the acrylic circular plate at a diameter of 14.25mm,
vehicle wheel diameter is 190mm and the ratio factor between wheel to drive shaft is
calculated as 0.55. The measured vehicle speed has the accuracy of ±0.05m/s and
this data would be used with steering angle to model the vehicle states. Therefore, it
is important to measure these quantities with more accuracy to fuse the model state
estimations with measurements from GPS and IMU. The Kalman filter estimator has
been used for fusing this information and further discussion on fusion algorithm is
given in Kalman filter section.
The steering angle measurement is made with the use of potentiometer and a 3D

printed gear unit that are meshed together to read the steering angle position. The
3D printed gear is attached to the steering mechanism rod and getting rotated, when
the steering system is rotated is shown in Fig 4.7. The motion be transmitted into
voltage through potentiometer and the calibration studies have been made to convert
the steering angle into road wheel angle for the given vehicle. Here, the potentiome-
ter is connected to one of the inbuilt analog pin on embedded system. The below
equation.4.15. provide the conversion between potentiometer voltage to road wheel
angle

RWA = 41.25× V olt− 19.25 (4.15)

106

www.manaraa.com

4.3.4 Control interface with vehicle actuators

As mentioned, the LQG controller makes the decisions based on the sensor inputs
and target map. The controller provide steering angle and speed commands to the
vehicle. However, the controller needs to be interfaced with motor and steering servo
to implement the commands and navigate the vehicle. The vehicle has come with
inbuilt Electronic speed controller (ESC) with the remote controller. However, the
PWM frequency and voltage levels of ESC have been debugged using oscilloscope and
function generator. The following frequency and voltage levels have been found for
the steering and DC motor unit of 1/5th truck,
Servo actuation definition:

† Frequency of operation: 181.2Hz

† Peak to Peak voltage level: 3.27V

† Full left PWM duty cycle: 21; full rigt PWM Duty cycle: 31

DC Motor actuation definition:

† Frequency of operation: 90.9Hz

† Peak to Peak voltage level: 3.27V

† Forward direction: stall duty cycle: 11, initialize duty cycle: 13.93

† minimum PWM duty cycle for very low speeds: 14; maximum PWM duty cycle
for top speed: 15

† Reverse direction: stall duty cycle: 13.93, initialize duty cycle: 13.2

† minimum PWM duty cycle for very low speeds: 12; maximum PWM duty cycle
for top speed: 9

The signal pins for steering servo and DC motor from ESC are bypassed from remote
controller through PWM pins on Beagle bone black. As mentioned, python has been
used for implementing the PWM duty cycle onto signal pins.

107

www.manaraa.com

4.3.5 State observer design

As mentioned, the Kalman filter is used as an observer in providing full state estima-
tion for the LQG controller. Further, from the above explained sensor measurements,
the embedded system receives data from each sensor at different update rates and
it is required to obtain data with a minimum update rate of 15 hz to navigate the
vehicle autonomously. However, the GPS module only update its measurements at
every 0.2 sec and not sufficient for the application. The Kalman estimator consider
the knowledge of noise in model development and noise in measurements and provide
the best estimates using probabilistic rules at a specified time period.
The Kalman filter fusion algorithm for making vehicle position and heading estimates
is made through following two steps,

4.3.5.1 Prediction step:

zk+1 = F ẑk +Buk (4.16)

P k+1 = FP̂kF
T +Qk (4.17)

Where,

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 dt 0 0 0 0
0 0 0 0 0 0
0 0 1 dt 0 0
0 0 0 0 0 0
0 0 0 0 1 dt
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
B1
0
B2
0
B3

⎤
⎥⎥⎥⎥⎥⎥⎦

B1 = vx cos θ, B2 = vx sin θ

B3 =
vx
L

tan δf

Here, equation (4.16) and (4.17) represents the priori estimations at k+1 step, based
on the vehicle kinematics and posterior estimations (ẑ, P̂) at step k. Further, the
error or noise in the prior estimations can be accounted through process noise Q. In
the present work, for simplicity, the process noise is considered as piece wise for the
implementation.

108

www.manaraa.com

4.3.5.2 Update step

The update equations as follows,
ẑk+1 = zk+1 +Kmat.ymat (4.18)

P̂k+1 = (I3×3 −Kmat.Hmat)P k+1 (4.19)

Where,
Smat = Hmat.P .H

T
mat +R

Kmat =
P .HT

mat

Smat
ymat = measmat − (Hmat.z)

Here, the measurement matrix consists of measurements from GPS base station and
IMU sensor values. Further, the noise in measurements would be accounted in R
matrix and the weightage for measurements and model predictions would be varied
based on the number of satellites availability and norm of the magnetic field at the
current position. Therefore, the adaptive weights would be used based on the knowl-
edge of sensor operation.
Therefore, the

4.3.6 Test conditions

The present work includes four types of test conditions including general map, 90◦

turn map, round about map and inverted S-type map is shown in Fig 4.9. Here,
general map indicates the path made near APS labs in Michigan Tech University. The
path surrounded with several ferrous material including a dyno and vehicle could able
to reject the external magnetic field while making the vehicle heading estimations.
Further, the vehicle has been tested during the snow conditions too. The second map
represents 90◦ turn to mimic the left turn on real road condition. The inverted S-type
map mimics the agricultural field and 180◦ turn map mimics the round-about turn is
shown in Figures from 4.12 to 4.10. As mentioned, the target map is made by number
of way points that are apart approximately 2 m from each other. These way points
are connected with smooth curve using the Cubic spline fit. The following Pseudo
code provide the algorithm for Cubic spline fit that makes smooth map between the
given waypoints,
The application of Cubic spline algorithm for different routes resulted in smooth
desired path for LQG controller is shown in Fig. 4.8. This is because, in real time,
the gps location points are not continuous and the controller require continuous line

109

www.manaraa.com

Algorithm 4 Desired path/map creation using Cubic Spline fit

ds = 0.1,h[1] = 0.0, s[1] = 0.0
A = 0N×N , A[0, 0] = 1.0
B = 0N×1

for i = 2 : no of waypoints(N)− 1 do
dx[i] = xwp[i+ 1]− xwp[i]
dy[i] = ywp[i+ 1]− ywp[i]

s[i+ 1] = s[i] +
√
dx[i]2 + dy[i]2

h[i] = s[i+1]-s[i]
end for
for k = 2 : no of waypoints(N) do
if k = (no of waypoints(N)− 1) then
A[k, k] = 2(h[k − 1] + h[k])

end if
A[k, k − 1] = h[k], A[k − 1, i] = h[k]

end for
A[N,N − 1] = 0.0, A[N,N] = 1.0
for k = 2 : no of waypoints(N)− 1 do

Bx[k] =
3(x[k+1]−x[k])

h[k]
− 3(x[k]−x[k−1])

h[k−1]

By[k] =
3(y[k+1]−y[k])

h[k]
− 3(y[k]−y[k−1])

h[k−1]

end for
cx = solve(A,Bx)
cy = solve(A,By)
for k = 2 : no of waypoints(N) do

dx =
(cx[k]−cx[k−1])

(3.h[k−1]
, dy =

(cy [k]−cy [k−1])

(3.h[k−1]

bx =
(x[k]−x[k−1])

(h[k−1]
− h[k−1](cx[k]+2.cx[k−1])

3

by =
(y[k]−y[k−1])

(h[k−1]
− h[k−1](cy [k]+2.cy [k−1])

3

end for
ssp = array(0, s[end], step = 0.1)
for j = 1 : (no of waypoints(N))/ds do
k = bisect of ds (or) indices between two points
dsx = ssp[j]− x[k]
xspline[j] = x[k] + bx[k].dsx + cx[k].ds

2
x + dx[k].ds

3
x

dsy = ssp[j]− y[k]
yspline[j] = y[k] + by[k].dsy + cy[k].ds

2
y + dy[k].ds

3
y

dxsp = bx[k] + 2cx[k].dsx + 3.dx[k].ds
2
x

dysp = by[k] + 2cy[k].dsy + 3.dy[k].ds
2
y

Y awsp = atan2(dy, dx)
ddxsp = 2.cx[k] + 6.dx[k].dsx
ddysp = 2.cy[k] + 6.dy[k].dsy
Curvaturesp = (ddy.dx− ddx.dy)/(dx2 + dy2)(1.5)

end for

110

www.manaraa.com

Figure 4.8: Desired path map creation using Cubic spline fit.

to track the path accurately. These desired maps from cubic spline fit closely mimic
the real road conditions with the given sparse waypoints. Terefore, the developed
LQG controller can be applied for real road scenarios.

4.4 Results and Discussion

The results section is mainly divided into two parts including simulation results and
validation results for LQG controller. Simulations are helpful in developing the map
prepossessing, controller gain tuning and analysing cross track errors before being ap-
plied onto real vehicle. This would save time and cost while developing the controller
for various curvature paths.

111

www.manaraa.com

����� ����� ����� ��

����	�P�

��

����

����

����

�
���
	�P

�

	�D�

��D��3�R��Q�W�V

�V�S���Q�H

�W�U�D�F���Q�

�� ���� ���� ����

�7��P�H���	�V�H�F�

���

���

��

�&
�U�R
�V�V
���W
�U�D
�F�
���H
�U�U
�R
�U�
��	
�P
� 	�E�

�� ���� ���� ����

�7��P�H���	�V�H�F�

�������

�����

��

"
�H�D
�G
��Q
�
���H
�U�U
�R
�U�
��	
�G
�H�
� 	�F�

�� ���� ���� ����

�7��P�H���	�V�H�F�

�����

��

����

�6
�W�H
�H�U
��Q
�
���D
�Q
�
��H
���
	�G
�H�
� 	�G�

Figure 4.9: Path tracking for general APS labs path

4.4.1 Simulation results

4.4.1.1 simulation-1 results:AV-4 map results

The simulations are made using Python script and each subsystem considered as
method in the code. As mentioned, the results were made for various curvature paths
that would mimic the real road conditions. From Fig. 4.9, it can be clearly seen
that, the controller is able to track the given AV-4 map within the cross track error
of ±0.25m error. Here, the waypoints are indicated with x symbol, and red curve
shows the Cubic spline that connects the waypoints to formulate desired path. The
green line shows the simulation tracking result, that tries to follow the desired path.
However, at the initial hick up, the vehicle tries to move away from the path and once
the controller gets stabilized, the controller was able to track the path within ±0.2m.
This could be because of Kalman filter observer matrix initialization and it requires
some time period for stabilizing the filter propagation and update steps. However,
during the actual tests, this initialization has been taken care by iterating the filter
before entering into the path tracking loop.

112

www.manaraa.com

�� �� ����

������P	

��

��

����

����

���
��P
	

��D	

��D
�3�R��Q�W�V

�V�S���Q�H

�W�U�D�F���Q�

�� �� ���� ���� ����

�7��P�H�����V�H�F	

�������

�������

�������

������

�&
�U�R
�V�V
���W
�U�D
�F�
���H
�U�U
�R
�U�
���
�P
	 ��E	

�� �� ���� ���� ����

�7��P�H�����V�H�F	

�����

�����

�����

��

"
�H�D
�G
��Q
�
���H
�U�U
�R
�U�
���
�G
�H�
	 ��F	

�� �� ���� ���� ����

�7��P�H�����V�H�F	

�����

��

����

�6
�W�H
�H�U
��Q
�
���D
�Q
�
��H
���
��G
�H�
	 ��G	

Figure 4.10: Path tracking for left-turn map

4.4.1.2 simulation-2 results:90◦ turn map

These tests mimic the left turn on real road conditions. Similar to above AV-4 map
results. the left turn results shows the initial hick up at the starting of path and slowly
merge with desired path with the maximum cross track error of ±0.2m is shown in
Fig.4.10. Here, the desired path at 90 ◦ turn is made with Cubic spline fit and
the curvature at this turn made the controller to follow the desired path smoothly.
The Fig.4.10(d) shows the steering angle command for the given path and it has
been restricted between its maximum limits of ±20◦. The heading error along the
path shows that, the vehicle is able to orient its heading along the path and reduces
unnecessary deviations from the desired path.

4.4.1.3 simulation-3 results:Round-about map

The round about map is one of the difficult paths that vehicle has to make while
vehicle is on the road. From Fig.4.11, it is observed that, the vehicle is able to track
the desired path within the error of ±0.2m. Similar to left turn map, the cubic spline
made the desired path curvature smooth and the points were connected by meeting
the continuity and curvature conditions at the waypoints.

113

www.manaraa.com

Figure 4.11: Path tracking for Round-about map

4.4.1.4 simulation-4 results:AF map

These simulations mimic the typical field conditions, where the vehicle makes con-
tinuous inverted ’S’ loops over and over for the entire field. The Fig.4.12 shows the
tracking performance of LQG controller for AF path. The desired path for AF field
is not smooth at the curves and thus the cross track error after the initial hick up
is shooting above 0.2 m. This can further be reduced by altering and inserting more
waypoints at the curve portion and thus improving the smoothness of desired path.
This is one of major advantage of developing simulations, while design and imple-
menting the controller on actual vehicle. The next section provide the validation
studies, that would provide real time implementation results for 1/5th vehicle.

4.4.2 Validation results

As mentioned, the LQG controller is implemented on 1/5th truck with the maximum
steering limits of ±25◦. The heading and GPS sensor provide measurements in global
coordinates and the vehicle model, controller have been developed with respect to
Cartesian coordinates. Therefore, all the measurements were converted into Carte-
sian coordinates, before entering into controller loop. This makes the positive steering
angle to take left turn and negative steering command to take right turn while vehicle
is tracking the path. Further, a low level proportional controller have been imple-
mented to track the commanded steering angle from LQG controller.

114

www.manaraa.com

Figure 4.12: LQG path tracking results on AF map

-30 -20 -10 0
0

10

20

30

40

50

Desired path
Waypoints
LQG track
Stanley track

0 20 40 60 80
-0.2

0

0.2

0.4

0.6

0.8 LQG track
Stanley track

20 40 60

-10

-5

0

5

10

LQG track
Stanley track

20 40 60

-5

0

5

10

15

20

25

LQG track
Stanley track

Figure 4.13: LQG path tracking test results comparison for AV-4 map

Fig.4.13 shows the tracking test results for AV-4 map using LQG controller and
Stanley controller [59]. The methodology for Stanley controller is provided in Ap-
pendix. C.3. From the results, it can be clearly seen that, the vehicle is able to

115

www.manaraa.com

track the given path within ±0.1m cross track error using LQG controller. However,
the same path was tracked by using Stanley controller with same test conditions
and sensor modules. The Stanley controller cross track error in Fig.4.13(b) has been
shooting upto 0.8 m during the tracking and it clearly shows the advantage of having
state estimation analysis in the controller development. The LQR controller has been
equipped with the Kalman observer for the state estimation and further have the ro-
bust control logic compared to the simple Stanley control law. From Figures 4.9 and
4.13, it can be concluded that, the simulation results from LQG controller are in good
agreement with the test results. The similar trend can be observed for the remaining
drive cycles too. The development of sensor interface with beagle bone black, Kalman
state estimator along with cubic spline desired path laid out the potential platform
for implementing the tracking and obstacle avoidance using LQG and MPC controller
and it is left for the future work. Further, these controllers can exploit the obstacle
avoidance logic from chapter.3.

116

www.manaraa.com

Chapter 5

Summary of Work

The present research work analysed various aspects of autonomous vehicle de-
velopment including sensor fusion analysis, developing non-linear MPC controller
algorithm for off road high speed application and real time implementation of LQG
controller on 1/5th truck. The conclusions from each study have been provided as
follows,

5.1 Conclusions

A modified Extended Kalman filter has been made by fusing the vehicle kinematics
information for alleviating magnetic disturbances on ground vehicle yaw estimations.
The filter reacts to the amount of external magnetic disturbances and replaces the
horizontal magnetic field vector with vehicle kinematics information. Further, based
on steering wheel angle and vehicle speed, the modified EKF can make accurate yaw
estimations both in straight line and turning conditions. The results showed that
the modified EKF has improved the performance of filter in magnetic disturbance
environment. With this modified EKF approach, while the vehicle is affected by
1 ± 0.8 Norm magnetic field it can reduce the maximum RMS errors in heading
estimations from 3.4 to 0.5◦ in straight path and 6.0 to 1.9 ◦ during tuning paths.
Due to high accuracy in speed sensor and steering angle measurements, this fusion
algorithm works for long distances and can sustain for longer periods without much
drift in heading estimations. Further work can be conducted to improve heading
estimates by fusing the GPS heading information and adding vehicle dynamics into

117

www.manaraa.com

the algorithm. This is left for the future work.
The study of sensor fusion has been provided in the above in section and below sec-
tion extends the conclusions and summary on non-linear MPC controller algorithm.
The Non-linear MPC controller has been developed for off-road high speed AGVs
application that would avoid both stationary and moving obstacles by meeting the
vehicle dynamical safety constraints and yet reaches the target location as soon as
possible. Further, the vehicle tries to avoid steep regions while maintaining minimum
specified vertical load on each tire. A new algorithm called ABD-JDN algorithm
is developed based on box slope and box detect methods to process the obstacles
information and CasADi tool is used to fuse the moving obstacles states information
into N-MPC problem formulation. This framework provides strong communication
between obstacle movement predictions and vehicle future predictions and prepares
the vehicle to take diversion in well advance from dangerous zone. Further, thirty
simulations are made by adding noise of ±0.35m in vehicle states, ±2.5◦ in vehicle
heading and ±0.05m in obstacle distance measurements. The algorithm provided
robust performance for the considered vehicle states and obstacle states uncertainty
limits and all thirty simulation runs reached target location as soon as possible
with collision free and yet ensured the vehicle dynamical safety for the entire path.
Finally, the simple and efficient lidar process for handling stationary obstacle-grade
fields along with the symbolic problem formulation using CasADi tool would execute
the control algorithm such that the real time implementation on vehicle can be
achieved.
The above two sections provide the summary on fusion and control algorithm
development studies. However, the final work presents the conclusions on real time
implementation of LQG controller by exploiting the developed algorithms from
sensor fusion and N-MPC controller.
The sensor fusion analysis provide robust heading data to the controller and vehicle is
stable enough to deal with external magnetic fields. The N-MPC model development
provided a way to formulate the problem and possible potential future obstacle avoid-
ance implementations can be made. However, the present work is implemented the
path tracking on 1/5th for various paths including left turn, AV-4 path, round-about
path and AF-path using LQG controller. Here, the given target map is made with the
set of way points, that are connected using Cubic spline curve. Therefore, the path
curvature is also calculated for the analysis. The fusion algorithm makes the best
estimates by fusing the GPS base station position with vehicle kinematics model. The
tracking results show that the vehicle could able track the path with the lateral er-
ror of ±0.25m error and experimental results matches well with the simulation results.

118

www.manaraa.com

5.2 Discussion

This section provide discussion on making connection between three research works
conducted in the present study. As mentioned, the first phase of current study con-
centrates on handling different sensors for providing accurate vehicle state estimates.
The Kalman filter fusion algorithms developed in the study are used in various parts of
LQG controller development including position, yaw, velocity and steering angle esti-
mations. For instance, while implementing the LQG controller on 1/5th truck without
the fusion algorithm for AV-4 path, the vehicle was wobbling near the dyno region.
This is because, the magnetometer was getting affected by the external magnetic
field and leading to erroneous vehicle yaw measurements. This has been eliminated
by using the developed Modified EKF algorithm in the LQG controller and processed
the IMU sensor reading for accurate yaw estimations. Similar to the yaw estimations,
the fusion algorithm has also been applied to position and velocity measurements and
improved controller tracking performance from ±0.6m to ±0.2m. This clearly shows
the systematic fusion algorithms reduces the noise in vehicle state estimations and
improve controller performance. This way, the developed algorithms in first phase of
research are linked with third phase of LQG controller implementation work.
Similarly, the second phase of research is concentrated on developing algorithms for
off road autonomous vehicles that can avoid both stationary and moving obstacles.
The results are generated using MATLAB based simulations on 2.8GHz intel(R)
Core(TM) i5-7440 HQ processor, and it is concluded that, the average time for each
MPC iteration is taking upto 0.305 sec. This includes the number of predictions
(N) of 100, stored obstacle information for upto 106 and inclusion of longitudinal
vehicle dynamics in the problem formulation. However, by reducing the number of
predictions and number of stored obstacles would reduce the processing time to ap-
proximately 1/4th times. Further, the generation of C-code from MATLAB functions
and CasADi tools reduces the parameter memory allocation and improves efficiency
of the code. This makes real time implementation of these algorithms along with
sensor fusion is possible and it is left for the future work. However, the methodology
used in the second phase of research is replicated in LQG controller implementation.
From the above conclusions and discussions, it is clear that, the base platform has
been laid out for developing and implementing MPC controller for both path tracking
and obstacle avoidance and yet reach the target location as soon as possible and this
is left for the future work. and explained in the future work section.

119

www.manaraa.com

www.manaraa.com

Chapter 6

Future Work

The future work from the present work can be summarised as follows:

1. The present work, fusion of vehicle kinematics with IMU magnetometer for al-
leviating the magnetic effects on vehicle yaw estimations have been studied.
However, incorporating the base station GPS position states would further im-
prove the fusion algorithm and thus robustness to external magnetic fields.

2. In the non-linear MPC controller development for grading avoidance, the value
of grade at each node can be evaluated and fused into the vehicle dynamic state
equation for further improving the grade performance of controller. However,
the computational burden would be increased appropriately.

3. Currently, the non-linear MPC controller is able reach target location with
considerable noise in the vehicle parameters. However, the model may diverge
with the additional noise in the parameters and it is recommended to develop
a robustness scheme to appropriately handle the noise factors.

4. The real time implementation of developed non-linear MPC controller is a chal-
lenging task. This may be achieved by offloading some of the calculations either
in offline or through using multi-threading operation. These calculations may
include terrain map processing, obstacle processing for reducing the load on
main controller.

5. The mentioned non-linear MPC algorithm can be trained for different terrain
maps, obstacle fields and grading conditions such that the calibration look up
tables can be generated. This task can be achieved through the appropriate
machine learning algorithms that can reduce computational burden for real
time implementation.

121

www.manaraa.com

6. The LQG controller implementation along with obstacle avoidance and vehicle
safety constraints can be incorporated to the existing work. Further, the noise
in obstacle distance measurements can be incorporated to improve the vehicle
safety in obstacle avoidance.

122

www.manaraa.com

References

[1] T. Litman, Autonomous vehicle implementation predictions. Victoria Transport
Policy Institute Victoria, Canada, 2017.

[2] A. Vahidi and A. Eskandarian, “Research advances in intelligent collision avoid-
ance and adaptive cruise control,” IEEE transactions on intelligent transporta-
tion systems, vol. 4, no. 3, pp. 143–153, 2003.

[3] D. F. Llorca, V. Milanés, I. P. Alonso, M. Gavilán, I. G. Daza, J. Pérez, and
M. Á. Sotelo, “Autonomous pedestrian collision avoidance using a fuzzy steering
controller,” IEEE Transactions on Intelligent Transportation Systems, vol. 12,
no. 2, pp. 390–401, 2011.

[4] J. C. McCall and M. M. Trivedi, “Video-based lane estimation and tracking
for driver assistance: survey, system, and evaluation,” IEEE transactions on
intelligent transportation systems, vol. 7, no. 1, pp. 20–37, 2006.

[5] M. Kok, J. D. Hol, T. B. Schön, F. Gustafsson, and H. Luinge, “Calibration of a
magnetometer in combination with inertial sensors,” in 2012 15th International
Conference on Information Fusion. IEEE, 2012, pp. 787–793.

[6] M. Pettersson, “Extended kalman filter for robust uav attitude estimation,” 2015.

[7] Z.-Q. Zhang, X.-L. Meng, and J.-K. Wu, “Quaternion-based kalman filter with
vector selection for accurate orientation tracking,” IEEE Transactions on Instru-
mentation and Measurement, vol. 61, no. 10, pp. 2817–2824, 2012.

[8] G. Wahba, “A least squares estimate of satellite attitude,” SIAM review, vol. 7,
no. 3, pp. 409–409, 1965.

[9] R. G. Valenti, I. Dryanovski, and J. Xiao, “A linear kalman filter for marg orien-
tation estimation using the algebraic quaternion algorithm,” IEEE Transactions
on Instrumentation and Measurement, vol. 65, no. 2, pp. 467–481, 2015.

123

www.manaraa.com

[10] X. Yun, E. R. Bachmann, and R. B. McGhee, “A simplified quaternion-based
algorithm for orientation estimation from earth gravity and magnetic field mea-
surements,” IEEE Transactions on instrumentation and measurement, vol. 57,
no. 3, pp. 638–650, 2008.

[11] R. Mahony, T. Hamel, and J.-M. Pflimlin, “Nonlinear complementary filters on
the special orthogonal group,” IEEE Transactions on automatic control, vol. 53,
no. 5, pp. 1203–1218, 2008.

[12] S. O. Madgwick, A. J. Harrison, and R. Vaidyanathan, “Estimation of imu and
marg orientation using a gradient descent algorithm,” in 2011 IEEE international
conference on rehabilitation robotics. IEEE, 2011, pp. 1–7.

[13] F. L. Markley, “Attitude error representations for kalman filtering,” Journal of
guidance, control, and dynamics, vol. 26, no. 2, pp. 311–317, 2003.

[14] J. L. Crassidis and F. L. Markley, “Unscented filtering for spacecraft attitude
estimation,” Journal of guidance, control, and dynamics, vol. 26, no. 4, pp. 536–
542, 2003.

[15] D. Choukroun, I. Y. Bar-Itzhack, and Y. Oshman, “Novel quaternion kalman
filter,” IEEE Transactions on Aerospace and Electronic Systems, vol. 42, no. 1,
pp. 174–190, 2006.

[16] C.-R. U.-I. manuals, “An-1008-sensors for orientation estimation,” in Document
rev. 1.0, Oct. 2012, pp. 1-11, “AN-1005-Undestanding Euler Angles”, Document
rev. 1.1. IEEE, Mar 2013, pp. 1–12.

[17] R. Costanzi, F. Fanelli, N. Monni, A. Ridolfi, and B. Allotta, “An attitude
estimation algorithm for mobile robots under unknown magnetic disturbances,”
IEEE/ASME Transactions on Mechatronics, vol. 21, no. 4, pp. 1900–1911, 2016.

[18] X. Tong, Z. Li, G. Han, N. Liu, Y. Su, J. Ning, and F. Yang, “Adaptive ekf
based on hmm recognizer for attitude estimation using mems marg sensors,”
IEEE Sensors Journal, vol. 18, no. 8, pp. 3299–3310, 2017.

[19] K. Feng, J. Li, X. Zhang, C. Shen, Y. Bi, T. Zheng, and J. Liu, “Correction: A
new quaternion-based kalman filter for real-time attitude estimation using the
two-step geometrically-intuitive correction algorithm. sensors 2017, 17, 2146,”
Sensors, vol. 17, no. 11, p. 2530, 2017.

[20] Y. S. Suh, Y. S. Ro, and H. J. Kang, “Quaternion-based indirect kalman fil-
ter discarding pitch and roll information contained in magnetic sensors,” IEEE
Transactions on Instrumentation and measurement, vol. 61, no. 6, pp. 1786–1792,
2012.

124

www.manaraa.com

[21] G. Shi, X. Li, and Z. Jiang, “An improved yaw estimation algorithm for land
vehicles using marg sensors,” Sensors, vol. 18, no. 10, p. 3251, 2018.

[22] R. Rajamani, Vehicle dynamics and control. Springer Science & Business Media,
2011.

[23] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.

[24] J. Liu, P. Jayakumar, J. L. Stein, and T. Ersal, “A nonlinear model predictive
control formulation for obstacle avoidance in high-speed autonomous ground
vehicles in unstructured environments,” Vehicle System Dynamics, vol. 56,
no. 6, pp. 853–882, 2018. [Online]. Available: https://doi.org/10.1080/00423114.
2017.1399209

[25] J. Liu, P. Jayakumar, J. L. Stein, and T. Ersal, “Combined speed and steering
control in high-speed autonomous ground vehicles for obstacle avoidance using
model predictive control,” IEEE Transactions on Vehicular Technology, vol. 66,
no. 10, pp. 8746–8763, Oct 2017.

[26] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,”
The International Journal of Robotics Research, vol. 5, no. 1, pp. 90–98, 1986.
[Online]. Available: https://doi.org/10.1177/027836498600500106

[27] S. Shimoda, Y. Kuroda, and K. Iagnemma, “High-speed navigation of unmanned
ground vehicles on uneven terrain using potential fields,” Robotica, vol. 25, no. 4,
p. 409–424, 2007.

[28] B. D. Luders, S. Karaman, and J. P. How, Robust Sampling-based
Motion Planning with Asymptotic Optimality Guarantees. [Online]. Available:
https://arc.aiaa.org/doi/abs/10.2514/6.2013-5097

[29] A. Hussein, H. Mostafa, M. Badrel-din, O. Sultan, and A. Khamis, “Metaheuris-
tic optimization approach to mobile robot path planning,” in 2012 International
Conference on Engineering and Technology (ICET), Oct 2012, pp. 1–6.

[30] J. V. Frasch, A. Gray, M. Zanon, H. J. Ferreau, S. Sager, F. Borrelli, and
M. Diehl, “An auto-generated nonlinear mpc algorithm for real-time obstacle
avoidance of ground vehicles,” in 2013 European Control Conference (ECC),
July 2013, pp. 4136–4141.

[31] P. Ogren and N. E. Leonard, “A convergent dynamic window approach to ob-
stacle avoidance,” IEEE Transactions on Robotics, vol. 21, no. 2, pp. 188–195,
April 2005.

125

www.manaraa.com

[32] Y. Gao, T. Lin, F. Borrelli, E. Tseng, and D. Hrovat, “Predictive control of au-
tonomous ground vehicles with obstacle avoidance on slippery roads,” in ASME
2010 dynamic systems and control conference. American Society of Mechanical
Engineers Digital Collection, pp. 265–272.

[33] Y. Rasekhipour, A. Khajepour, S. Chen, and B. Litkouhi, “A potential field-
based model predictive path-planning controller for autonomous road vehicles,”
IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 5, pp.
1255–1267, May 2017.

[34] F. Allgöwer and A. Zheng, Nonlinear model predictive control. Birkhäuser, 2012,
vol. 26.

[35] L. Wang, Model predictive control system design and implementation using MAT-
LAB®. Springer Science & Business Media, 2009.

[36] J. Park, D.-W. Kim, Y. Yoon, H. J. Kim, and K. Yi, “Obstacle avoidance of
autonomous vehicles based on model predictive control,” Proceedings of the In-
stitution of Mechanical Engineers, Part D: Journal of Automobile Engineering,
vol. 223, pp. 1499 – 1516, 2009.

[37] H. O. J. BEVAN, G. P; GOLLEE, “Trajectory generation for road vehicle ob-
stacle avoidance using convex optimization,” Proceedings of the Institution of
Mechanical Engineers. Part D, Journal of automobile engineering, 2010.

[38] M. Werling and D. Liccardo, “Automatic collision avoidance using model-
predictive online optimization,” in 2012 IEEE 51st IEEE Conference on Decision
and Control (CDC). IEEE, 2012, pp. 6309–6314.

[39] R. Attia, J. Daniel, J. Lauffenburger, R. Orjuela, and M. Basset, “Reference
generation and control strategy for automated vehicle guidance,” in 2012 IEEE
Intelligent Vehicles Symposium, June 2012, pp. 389–394.

[40] J. Nilsson, P. Falcone, M. Ali, and J. Sjöberg, “Receding horizon
maneuver generation for automated highway driving,” Control Engineering
Practice, vol. 41, pp. 124 – 133, 2015. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0967066115000726

[41] S. M. Erlien, S. Fujita, and J. C. Gerdes, “Shared steering control using safe
envelopes for obstacle avoidance and vehicle stability,” IEEE Transactions on
Intelligent Transportation Systems, vol. 17, no. 2, pp. 441–451, Feb 2016.

[42] M. Seder and I. Petrovic, “Dynamic window based approach to mobile robot
motion control in the presence of moving obstacles,” in Proceedings 2007 IEEE
International Conference on Robotics and Automation, April 2007, pp. 1986–
1991.

126

www.manaraa.com

[43] T. Dewi, N. Uchiyama, and S. Sano, “Service mobile robot control for tracking a
moving object with collision avoidance,” in 2015 IEEE International Workshop
on Advanced Robotics and its Social Impacts (ARSO), June 2015, pp. 1–6.

[44] B. Damas and J. Santos-Victor, “Avoiding moving obstacles: the forbidden ve-
locity map,” in 2009 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Oct 2009, pp. 4393–4398.

[45] J. Liu, P. Jayakumar, J. L. Stein, and T. Ersal, “An mpc algorithm with com-
bined speed and steering control for obstacle avoidance in autonomous ground
vehicles,” in ASME 2015 Dynamic Systems and Control Conference. American
Society of Mechanical Engineers Digital Collection.

[46] J. Liu, P. Jayakumar, J. Stein, and T. Ersal, “A multi-stage optimization for-
mulation for mpc-based obstacle avoidance in autonomous vehicles using a lidar
sensor,” vol. 2, 10 2014.

[47] T. Shim and C. Ghike, “Understanding the limitations of different vehicle
models for roll dynamics studies,” Vehicle System Dynamics, vol. 45, no. 3, pp.
191–216, 2007. [Online]. Available: https://doi.org/10.1080/00423110600882449

[48] D. Assanis, Z. Filipi, S. Gravante, X. Gui, L. Louca, D. Rideout, J. Stein, and
Y. Wang, “Validation and use of simulink integrated, high fidelity, engine-in-
vehicle simulation of the international class vi truck,” 03 2000.

[49] T. Ersal, M. Brudnak, A. Salvi, J. L. Stein, Z. Filipi, and H. K. Fathy,
“Development and model-based transparency analysis of an internet-distributed
hardware-in-the-loop simulation platform,” Mechatronics, vol. 21, no. 1, pp. 22
– 29, 2011. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0957415810001388

[50] E. Bakker, L. Nyborg, and H. B. Pacejka, “Tyre modelling for use in vehicle
dynamics studies,” in SAE International Congress and Exposition. SAE
International, feb 1987. [Online]. Available: https://doi.org/10.4271/870421

[51] LeddarTechInc., LeddarVu and configurator User Guide, P/N 54A0028-2,
01202017 © 2017.

[52] R. Rajamani, Vehicle dynamics and control. Springer Science & Business Media,
2011.

[53] R. A. Bixel, G. J. Heydinger, D. A. Guenther, and S. J. Novak, “Sprung/un-
sprung mass properties determination without vehicle diassembly,” SAE Tech-
nical Paper, Tech. Rep., 1996.

127

www.manaraa.com

[54] S. Rakheja and A. Piche, “Development of directional stability criteria for an
early warning safety device,” SAE transactions, pp. 877–889, 1990.

[55] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “Casadi: a
software framework for nonlinear optimization and optimal control,” Mathemat-
ical Programming Computation, vol. 11, no. 1, pp. 1–36, 2019.

[56] A. Wächter and L. T. Biegler, “On the implementation of an interior-point fil-
ter line-search algorithm for large-scale nonlinear programming,” Mathematical
programming, vol. 106, no. 1, pp. 25–57, 2006.

[57] N. Lyu, C. Deng, L. Xie, C. Wu, and Z. Duan, “A field operational test in
china: Exploring the effect of an advanced driver assistance system on driving
performance and braking behavior,” Transportation Research Part F: Traffic
Psychology and Behaviour, vol. 65, pp. 730 – 747, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1369847816306672

[58] M. Kyriakidis, C. van de Weijer, B. van Arem, and R. Happee, “The deployment
of advanced driver assistance systems in europe,” Available at SSRN 2559034,
2015.

[59] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong,
J. Gale, M. Halpenny, G. Hoffmann et al., “Stanley: The robot that won the
darpa grand challenge,” in The 2005 DARPA grand challenge. Springer, 2007,
pp. 1–43.

[60] O. Amidi and C. E. Thorpe, “Integrated mobile robot control,” in Mobile Robots
V, vol. 1388. International Society for Optics and Photonics, 1991, pp. 504–523.

[61] M.-W. Park, S.-W. Lee, and W.-Y. Han, “Development of lateral control system
for autonomous vehicle based on adaptive pure pursuit algorithm,” in 2014 14th
International Conference on Control, Automation and Systems (ICCAS 2014).
IEEE, 2014, pp. 1443–1447.

[62] M. Elbanhawi, M. Simic, and R. Jazar, “Receding horizon lateral vehicle control
for pure pursuit path tracking,” Journal of Vibration and Control, vol. 24, no. 3,
pp. 619–642, 2018.

[63] S. Dixit, S. Fallah, U. Montanaro, M. Dianati, A. Stevens, F. Mccullough, and
A. Mouzakitis, “Trajectory planning and tracking for autonomous overtaking:
State-of-the-art and future prospects,” Annual Reviews in Control, vol. 45, pp.
76–86, 2018.

[64] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and dynamic
vehicle models for autonomous driving control design,” in 2015 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2015, pp. 1094–1099.

128

www.manaraa.com

[65] Y. Xia, F. Pu, S. Li, and Y. Gao, “Lateral path tracking control of autonomous
land vehicle based on adrc and differential flatness,” IEEE Transactions on In-
dustrial Electronics, vol. 63, no. 5, pp. 3091–3099, 2016.

[66] M. Brown, J. Funke, S. Erlien, and J. C. Gerdes, “Safe driving envelopes for
path tracking in autonomous vehicles,” Control Engineering Practice, vol. 61,
pp. 307–316, 2017.

[67] J. Ji, A. Khajepour, W. W. Melek, and Y. Huang, “Path planning and tracking
for vehicle collision avoidance based on model predictive control with multi-
constraints,” IEEE Transactions on Vehicular Technology, vol. 66, no. 2, pp.
952–964, 2016.

[68] S. Yim, K. Jeon, and K. Yi, “An investigation into vehicle rollover prevention
by coordinated control of active anti-roll bar and electronic stability program,”
International Journal of Control, Automation and Systems, vol. 10, no. 2, pp.
275–287, 2012.

[69] Y. S. Suh, “Orientation estimation using a quaternion-based indirect kalman
filter with adaptive estimation of external acceleration,” IEEE Transactions on
Instrumentation and Measurement, vol. 59, no. 12, pp. 3296–3305, 2010.

[70] H. Pacejka, Tire and vehicle dynamics. Elsevier, 2005.

[71] A. Rucco, G. Notarstefano, and J. Hauser, “Optimal control based dynamics
exploration of a rigid car with longitudinal load transfer,” IEEE Transactions
on Control Systems Technology, vol. 22, no. 3, pp. 1070–1077, 2013.

[72] J. M. Snider et al., “Automatic steering methods for autonomous automobile
path tracking,” Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RITR-09-
08, 2009.

[73] K. Lee, S. Jeon, H. Kim, and D. Kum, “Optimal path tracking control of au-
tonomous vehicle: Adaptive full-state linear quadratic gaussian (lqg) control,”
IEEE Access, vol. 7, pp. 109 120–109 133, 2019.

[74] S. Jeon, K. Lee, H. Kim, and D. Kum, “Path tracking control of autonomous
vehicles using augmented lqg with curvature disturbance model,” International
Conference on Control Robot System Society, pp. 1543–1548, 2019.

129

www.manaraa.com

www.manaraa.com

Appendix A

Vehicle orientation representation
using Quaternions

A.1 Quaternion properties and rotations

Quaternion definition: Quaternion consists of 4 components, with 1 scalar and 3
vectors. Further, the 3 vectors or imaginary components represents x, y and z axes
respectively. The Quaternion (q) can be written as,

q = q0 + q1i+ q2j + q3k (A.1)

Here,q0, represents the scalar part and q1, q2 and q3 represents magnitudes in x, y
and z axes respectively. Alternatively, Quaternion can be represented in matrix form
as,

q =

⎡
⎢⎢⎣
q0
q1
q2
q3

⎤
⎥⎥⎦ =

[
q0
qv

]
(A.2)

Quaternion Conjugate:
q∗ = q0 − q1i− q2j − q3k (A.3)

131

www.manaraa.com

Quaternion addition and subtraction: When two quaternions p and q are added
together it becomes,

p+ q =

⎡
⎢⎢⎣
p0 + q0
p1 + q1
p2 + q2
p3 + q3

⎤
⎥⎥⎦ , p− q =

⎡
⎢⎢⎣
p0 − q0
p1 − q1
p2 − q2
p3 − q3

⎤
⎥⎥⎦ (A.4)

Quaternion multiplication: Quaternion multiplication is not commutative and it has
following results of multiplying two vectors,

ij = k, ji = −k

jk = i, kj = −i

ki = j, ik = −j

ii = jj = kk = −1

Therefore, multiplication of Quaternions p and q becomes,

q ⊗ p =

⎡
⎢⎢⎣
q0p0 − q1p1 − q2p2 − q3p3
q1p0 + q0p1 − q3p2 + q2p3
q2p0 + q3p1 + q0p2 − q1p3
q3p0 − q2p1 + q1p2 + q0p3

⎤
⎥⎥⎦ (A.5)

The symbol ⊗ indicates Quaternion multiplication. Further, the above can be written
in matrix multiplication form as follows,

q ⊗ p =

⎡
⎢⎢⎣
q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
p0
p1
p2
p3

⎤
⎥⎥⎦ (A.6)

Unit norm property: Every Quaternion has to satisfy its unit-norm property called,
|q|2 = |q0|

2 + |qv|
2 = 1 (A.7)

Therefore, for any angle θ, cos2 θ + sin2 θ=1 holds true. Since, q20 ≤ 1, There must
exist angle θ such that,

cos2 θ = q20
sin2 θ = |qv|

2

Under the assumption of −π < θ < π, the association of angle θ with Quaternion
becomes,

q = cos θ + u sin θ (A.8)

Where, u is a unit vector and θ represents the amount of rotation around an axis,
which is defined by the unit vector u. Quaternion rotation:
For the given unit Quaternion, q = q0 + qv = cos θ + u sin θ, the operation q ⊗ r ⊗ q∗

represents rotation of vector r in 3D space with an angle of 2θ about qv as the axis

132

www.manaraa.com

of rotation. Therefore, the rotation operation becomes,
r′ = q ⊗ r ⊗ q∗ (A.9)

Where, r′ is the rotated matrix and q∗ is Quaternion conjugate. By expanding equa-
tion A.9

r′ = (q0 + q1i+ q2j + q3k)(rxi+ ryj + rzk)(q0 − q1i− q2j − q3k) (A.10)

By using the above Quaternion multiplication rule in Equation A.10 it becomes,
r′ = q ⊗ r ⊗ q∗ = Cr (A.11)

Where,

C =

⎡
⎣q

2
0 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23

⎤
⎦

The above matrix C is called the rotation matrix and this matrix is used for rotating
given vector from body frame to reference or vice versa. Further, this matrix is
important in making conversion between Quaternion to Euler angle conversion too
[21].
Therefore, the matrix Cb

r , which is rotation matrix from reference frame to B−frame
can be written as follows;

Cb
r = CT =

⎡
⎣q

2
0 + q21 − q22 − q23 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q20 − q21 + q22 − q23 2(q2q3 + q0q1)
2(q1q3 + q0q2) 2(q2q3 − q0q1) q20 − q21 − q22 + q23

⎤
⎦ (A.12)

Derivation for time propagation using gyro sensor output:

S(w) =

⎡
⎢⎢⎣
0 −wx −wy −wz
wx 0 wz −wy
wy −wz 0 wx
wz wy −wx 0

⎤
⎥⎥⎦ , S(q) =

⎡
⎢⎢⎣
−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

⎤
⎥⎥⎦ ,

q =

⎡
⎢⎢⎣
q0
q1
q2
q3

⎤
⎥⎥⎦ , w =

⎡
⎣wxwy
wz

⎤
⎦

Where S(w), S(q) denote linear mapping from 	3 to 	(4×4) and linear mapping from
	4 to 	3 ×	4 respectively [15].

133

www.manaraa.com

System dynamics equation with gyro bias becomes,

q̇ =
1

2
S(w − bg)q =

1

2
S(q − bg)w

=
1

2

⎡
⎢⎢⎣
0 −wx −wy −wz
wx 0 wz −wy
wy −wz 0 wx
wz wy −wx 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
q0
q1
q2
q3

⎤
⎥⎥⎦+

1

2

⎡
⎢⎢⎣
0 −bgx −bgy −bgz
bgx 0 bgz −bgy
bgy −bgz 0 bgx
wgz wgy −bgx 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
q0
q1
q2
q3

⎤
⎥⎥⎦

(A.13)

The final discretized state propagation matrix can be written for the sake of clarity
as,

qk+1 =
1

2
S(qk)w −

T

2
S(qk)b

g + qk (A.14)

bgk+1 = bgk

xk+1 = Axk +Buk (A.15)

[
q
bg

]
k+1

=

[
I4×4 −T

2
S(q)

03×4 I3×3

]
k

[
q
bg

]
k

+

[
T
2
S(q)
03×3

]
k

wk (A.16)

By expanding Equation.A.16, it becomes,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q0
q1
q2
q3
bgx
bgy
bgz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
k+1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 −T
2
(−q1) −T

2
(−q2) −T

2
(−q3)

0 1 0 0 −T
2
(q0) −T

2
(−q3) −T

2
(q2)

0 0 1 0 −T
2
(q3) −T

2
(q0) −T

2
(−q1)

0 0 0 1 −T
2
(−q2) −T

2
(−q1) −T

2
(−q0)

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q0
q1
q2
q3
bgx
bgy
bgz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
k

+
T

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
k+1

⎡
⎣wxwy
wz

⎤
⎦ (A.17)

134

www.manaraa.com

A.2 Derivations for Linearization of acceleration

measurement model

As mentioned, the non-linear accelerometer model is as follows,
yba = Cb

r(−g) + eba (A.18)

The above model can be linearized using Taylor series expansion
f(x)|x=a = f(a) + f ′(a)(x− a) + f ′′(a)(x− a)2 + ... (A.19)

This can be applied to above accelerometer model (by removing higher order terms)
as follows;
The non-linear rotation matrix Cb

r for accelerometer model, can be written as fa and
therefore,

fa(qk)|qk=qk−1
= fa(qk−1) + f ′

a(qk−1)(qk − qk−1) (A.20)

From Equations. A.19 and A.20, the linearized accelerometer model becomes,
yba = [f ′

a(qk−1)(−q)]qk + [fa(qk−1)− f ′

a(qk−1)qk−1](−g) + eba (A.21)

The above Equation A.21, is in the form of y = Cx +D and the extra terms D can
be neglected from the equations,
Therefore, the final linearized accelerometer model becomes,

yba = [f ′

a(qk−1)(−g)]qk + eba (A.22)

Where, f ′

a(qk−1) is called Jacobian of accelerometer model and assuming no exter-
nal acceleration, the gravitational vector g becomes C1T . Therefore, the non-linear
rotation matrix in Equation A.22 becomes,

fa = f ′

a(qk−1)(−g) = −

⎡
⎣ 2(q1q3 − q0q2)

2(q2q3 + q0q1)
q20 − q21 − q22 + q23

⎤
⎦ (A.23)

And the corresponding accelerometer model Jacobian becomes,

f ′

a(qk−1) =
∂fa(q)

∂q
|q=qk−1

=

⎡
⎢⎣
∂fa1
∂q0

∂fa1
∂q1

∂fa1
∂q2

∂fa1
∂q3

∂fa2
∂q0

∂fa2
∂q1

∂fa2
∂q2

∂fa2
∂q3

∂fa3
∂q0

∂fa3
∂q1

∂fa3
∂q2

∂fa3
∂q3

⎤
⎥⎦
k−1

= 2

⎡
⎣−q2 q3 −q0 q1
q1 q0 q3 q2
q0 −q1 −q2 q3

⎤
⎦
k−1

135

www.manaraa.com

Therefore, the final expanded accelerometer measurement model without external
acceleration would become,

yba = Caqk + eba (A.24)

Where, Jacobian Ca = 2

⎡
⎣−q2 q3 −q0 q1
q1 q0 q3 q2
q0 −q1 −q2 q3

⎤
⎦ = f ′

a(qk−1) However, with external

acceleration the gravity vector would have non-zero terms in it and thus, the Jacobian
(Ca) for non-zero measurement model can be written as follows,

[f ′

a(qk−1) = Ca

= 2

⎡
⎣Ca1,1ar Ca1,2ar Ca1,3ar Ca1,4ar
Ca2,1ar Ca2,2ar Ca2,3ar Ca2,4ar
Ca3,1ar Ca3,2ar Ca3,3ar Ca3,4ar

⎤
⎦
k−1

where,
Ca1,1 =

[
q0 q3 −q2

]
;Ca1,2 =

[
q1 q2 q3

]
;Ca1,3 =

[
−q2 q1 −q0

]
;

Ca1,4 =
[
−q3 q0 q1

]
;Ca2,1 =

[
−q3 q0 q1

]
;Ca2,2 =

[
q2 −q1 q0

]
;

Ca2,3 =
[
q1 q2 q3

]
;Ca2,4 =

[
−q0 −q3 q2

]
;Ca3,1 =

[
q2 −q1 q0

]
;

Ca3,2 =
[
q3 −q0 −q1

]
;Ca3,3 =

[
q0 q3 −q2

]
;Ca3,4 =

[
q1 q2 q3

]
;

Where ar = (ae−g), is called acceleration in reference frame with external acceleration
(ae).

A.3 Derivations for Linearization of magnetome-

ter measurement model:

Similar to accelerometer measurement model, the non-linear magnetometer measure-
ment model is,

ybm = Cb
r(mr) + ebm (A.25)

The magnetometer measurement model can be linearized similar to above accelerom-
eter measurement model except that the gravity vector would be replaced with refer-
ence magnetic field vector at the given location. The reference magnetic field vector

is defined as mr =
[
mxr mxr mxr

]T
. Therefore, the Jacobean for magnetometer

136

www.manaraa.com

Table A.1

mean and variance of 3-axis gyro, accelerometer and magnetometer sensor
test data

Component ax Component mz

mean -0.006571 mean 0.772032
std 0.000695 std 0.006216
Component ay Component wx
mean -0.006571 mean 0.772032
std 0.000695 std 0.006216
Component az Component wy
mean -0.006571 mean 0.772032
std 0.000695 std 0.006216
Component mx Component wz
mean -0.006571 mean 0.772032
std 0.000695 std 0.006216
Component my - -
mean -0.006571 - -
std 0.000695 - -

measurement model can be computed as follows,
[f ′

m(qk−1) = Cm

= 2

⎡
⎣Ca1,1mr Ca1,2mr Ca1,3mr Ca1,4mr

Ca2,1mr Ca2,2mr Ca2,3mr Ca2,4mr

Ca3,1mr Ca3,2mr Ca3,3mr Ca3,4mr

⎤
⎦
k−1

The final magnetometer measurement model becomes,
ybm = Cmqk + ebm (A.26)

A.4 IMU Sensor properties

Table. A.1 provide the sensor noise in IMU sensor.

A.5 Test conditions

137

www.manaraa.com

Table A.2

Test condition matrix and corresponding Mag zones for Mag-affected tests.

Test Condition Mag effect
applied

Mag effect
removed

Distance
traveled in
Mag zone,
(m)

Total length
of test condi-
tion, (m)

St. line towards
West

At S1 point At S2 point 10 m 27 m

St. line towards
East

At S2 point At S1 point 10 m 27 m

90 Deg turn East to
North

At N2 point At N1 point Approx. 14 m Approx. 28.7
m

90 Deg turn South
to West

At N1 point At N2 point Approx. 14 m Approx. 28.7
m

90 Deg turn West
to North

At N3 point At N1 point Approx. 14 m Approx.
27.71 m

90 Deg turn South
to East

At N1 point At N3 point Approx. 14 m Approx.
27.71 m

5m circle round-
about towards
West

At C1 point At C2 point Approx. 12 m Approx. 31 m

5m circle round-
about towards East

At C1 point At C3 point Approx. 12 m Approx. 31 m

7m circle round-
about towards
West

At C4 point At C5 point Approx. 14.1
m

Approx. 33.3
m

7m circle round-
about towards East

At C4 point At C6 point Approx. 14.1
m

Approx. 33.3
m

circle test in clock-
wise direction

Starting of
2nd circle

End of 2nd
circle

31.4 m (cir-
cumference of
5m radius cir-
cle)

Total 3 circles
with 5m ra-
dius, 94.2 m

138

www.manaraa.com

Appendix B

NMPC controller code

B.1 Stationary Obstacle avoidance code

%% step 1: define decision variables

clear all

close all

clc

% to add casadi path to the program

addpath('G:\My Drive\PhD_work\AV2_Project\N-MPC_stuff\←↩

casadi -windows -matlabR2016a -v3.4.5 ');

import casadi .*

% STEP 1: define constants and design varibales

N = 50;

dt = 0.15;

%## vehicle parameters:

mass = 2689; % in kgs

lf = 1.58; lr = 1.72; % front ,rear axle to C.G. location

Iz = 4110; % in kg -m^2

rob_diam = 2.5;

L = lf+lr; % wheel base

delta_f_max = pi/4; delta_f_min = -delta_f_max;

139

www.manaraa.com

%## define control inputs

jerk = SX.sym('Jk');

str_rate = SX.sym('str_rate ');

T = SX.sym('Tp');

%## define states

Pos_x = SX.sym('s1');

Pos_y = SX.sym('s2');

theta = SX.sym('theta ');

vx = SX.sym('vx');

vy = SX.sym('vy'); % define y_dot

wz = SX.sym('wz');

ax = SX.sym('acce'); % define varibale long velo , vx in←↩

m/sec

delta_f = SX.sym('del_f '); % steering angle

FE_effi_Tar = SX.sym('Effi_Tar ');

FE_effi_req = SX.sym('Effi_req ');

states = [Pos_x;Pos_y;theta;vx;vy;wz;ax;delta_f]; % ←↩

these are our final states required for the analysis

n_states = length(states);

n_ref_states = 4; % x_tar ,y_tar ,theta_tar ,←↩

velo_tar (adding velo too)

controls = [jerk;str_rate;T]; % these are control←↩

inputs

n_controls = length(controls);

FE_states = [FE_effi_Tar;FE_effi_req];

n_FE_states = length(FE_states);

% define length of vehicle safety constrints ,

n_veh_safty_states = 4;

no_of_obs_detect = 106; obs_states =2;

n_obs_detected = no_of_obs_detect*obs_states;

% apply moving constraint for obstacle avoidance

n_min_dist = 1;

n_slope = 2;

n_hdng_err = (N+1);

140

www.manaraa.com

U = SX.sym('U',n_controls , N);

P = SX.sym('P',n_states+n_ref_states+n_FE_states+←↩

n_obs_detected+n_slope+n_hdng_err);

pred_state_matrix = SX.sym('X_pred ',n_states ,(N+1));

hdng_err_state = 1;

xdot = states (4)*cos(states (3)) - (states (5)+lf*states←↩

(6))*sin(states (3));

ydot = states (4)*sin(states (3)) + (states (5)+lf*states←↩

(6))*cos(states (3));

thetadot = states (6);

xdotdot = states (7);

slope= [P(n_states+n_ref_states+n_FE_states+←↩

n_obs_detected+n_slope -1);P(n_states+n_ref_states+←↩

n_FE_states+n_obs_detected+n_slope)];

[Fyf ,Fyr] = Tire_model(states (4),states (5),states (6),←↩

states (8),states (7),slope (1));

ydotdot = (Fyf+Fyr)/mass - states (4)*states (6);

thetadotdot = (Fyf*lf - Fyr*lr)/Iz;

acce_dot = controls (1);

delta_dot = controls (2);

% add hdng error through P-parameter

hdng_pred_matrix = P(n_states+n_ref_states+n_FE_states+←↩

n_obs_detected+n_slope +1: n_states+n_ref_states+←↩

n_FE_states+n_obs_detected+n_slope+n_hdng_err);

sys_model = [xdot;ydot;thetadot;xdotdot;ydotdot;←↩

thetadotdot;acce_dot;delta_dot];

model_fn = Function('f',{states ,controls ,slope},{←↩

sys_model });

% STEP 2: formulate Objective function:

obj = 0; % initialize with objective fn

g = []; % constraint vector

% integral gains:

Q = zeros (4,4);

Q(1,1) = 0.05; Q(2,2) = 0.05; Q(3,3) = 0.00; Q(4,4)= 50;

141

www.manaraa.com

w_hdng_err = 60; Q_delta = 0.005;

R = zeros (3,3); R(1,1) = 0.05; R(2,2) = 0.5; R(3,3) = ←↩

0.00;

w_FE = 0.0; w_phi_f = 5e-2; w_Fz = 0.005;

% terminal cost weights

w_dist = 0.5;

w_phi = 15;

w_obs = 0.005;

w_t = 0.001;

% not yet used weight terms:

w_delta = 0.1;

w_str = 1;

w_j = 0.01;

w_cf = 1;

% vehicle safety constraints terms:

Fz_thr = 1000; % Threshold vertical load for vehicle ←↩

safety constraint , in N

Fz_off = 300; % in N

a_term = Fz_thr + 3* Fz_off;

b_term = Fz_off;

Lidar_dist_limit = 75;

% define parameter for making equal prediction length ,

n_pred_len = 1;

states_curr = pred_state_matrix (:,1);

g = [g; states_curr -P(1: n_states)];

for k = 1:N

states_curr = pred_state_matrix (:,k); control_curr =←↩

U(:,k);

ARC_term1 = sin(P(n_states +3))*(states_curr (1)-P(←↩

n_states +1)) - cos(P(n_states +3))*(states_curr (2)-←↩

P(n_states +2));

142

www.manaraa.com

[Fzr_left ,Fzr_right ,Fzf_left , Fzf_right] = ←↩

vehi_safety_slope(states_curr (4),states_curr (5),←↩

states_curr (6) ,(control_curr (1) *0.1) ,(control_curr←↩

(2) *0.1) ,slope (1),slope (2));

Fzr_L_term = tanh(-(Fzr_left -a_term)/b_term);←↩

Fzr_R_term = tanh(-(Fzr_right -a_term)/b_term);

Fzf_L_term = tanh(-(Fzf_left -a_term)/b_term);←↩

Fzf_R_term = tanh(-(Fzf_right -a_term)/b_term);

ARC_term2 = Fzr_L_term + Fzr_R_term + Fzf_L_term + ←↩

Fzf_R_term;

Effi_term = P(n_states+n_ref_states +1)-P(n_states+←↩

n_ref_states +2);

states_term = (states_curr (1:4) -P((n_states +1):(←↩

n_states+n_ref_states)));

% % adding a term for hdng error:

hdng_err_rad_term = hdng_pred_matrix(k,:);

obj = obj + ARC_term1 '* w_phi_f*ARC_term1+w_Fz*←↩

ARC_term2 + w_hdng_err*hdng_err_rad_term ^2 + ←↩

states_term '*Q*states_term + Q_delta*states_curr←↩

(8)^2 + control_curr '*R*control_curr + Effi_term '*←↩

w_FE*Effi_term;

states_next = pred_state_matrix (:,k+1); % ←↩

define each node states with a symbolic varibale ←↩

of pred_state_matrix

model_fn_value = model_fn(states_curr ,control_curr ,←↩

slope);

states_next_euler = states_curr + (control_curr (3)*←↩

model_fn_value);

g = [g; states_next -states_next_euler]; % ←↩

compute the constraints for each state at each ←↩

nodeend

g = [g; -(Fzr_left -Fz_thr)]; % ←↩

the min load on left tire should be more than 1000←↩

N

143

www.manaraa.com

g = [g; -(Fzr_right -Fz_thr)]; % ←↩

the min load on left tire should be more than 1000←↩

N

g = [g; -(Fzf_left -Fz_thr)]; % ←↩

the min load on left tire should be more than 1000←↩

N

g = [g; -(Fzf_right -Fz_thr)]; % ←↩

the min load on left tire should be more than 1000←↩

N

pred_dist = states_curr (4)*control_curr (3)*N;

g = [g; -(pred_dist -Lidar_dist_limit)]; % this ←↩

would decide the min distance that can be made ←↩

predictions ,

end

s_0 = sqrt((P(n_states +1)-P(1))^2+(P(n_states +2)-P(2))←↩

^2);

s_f = sqrt((P(n_states +1)-states_curr (1))^2+(P(n_states←↩

+2)-states_curr (2))^2);

phi_frg = atan2(P(n_states +2)-states_curr (2),P(n_states←↩

+1)-states_curr (1));

phi_diff = atan2(sin(states_curr (3)-phi_frg),cos(←↩

states_curr (3)-phi_frg));

obj = obj + w_dist*s_f/s_0 + w_phi*phi_diff ^2+ w_t*←↩

control_curr (3)*N;

obs_dia = 5.0; % in meters

for O = 1: no_of_obs_detect

obj = obj + w_obs /(sqrt((pred_state_matrix (1,k)-P(←↩

n_states+n_ref_states+n_FE_states +(2*O-1)))^2 + (←↩

pred_state_matrix (2,k)-P(n_states+n_ref_states+←↩

n_FE_states +2*O))^2)+(rob_diam /2 + obs_dia /2));

end

c1 = -1.28e-4; c2 =8.59e-3; c3= -0.2257; c4 =3.0828; c5←↩

= -1.38e-4; c6 =6.85e-3;c7= -0.1204;c8= -3.5589;

ax_max = c1*vx^3+c2*vx^2+c3*vx+c4;

144

www.manaraa.com

ax_min = c5*vx^3+c6*vx^2+c7*vx+c8;

constraint_model = [ax_max;ax_min];

con_fn = Function('f',{states},{ constraint_model });

for k = 1:N+1

for O = 1: no_of_obs_detect % for number of ←↩

obstacles , define constraint for each obstacle

g = [g; -sqrt((pred_state_matrix (1,k)-P(n_states←↩

+n_ref_states+n_FE_states +(2*O-1)))^2 + (←↩

pred_state_matrix (2,k)-P(n_states+n_ref_states←↩

+n_FE_states +(2*O)))^2)+(rob_diam /2 + obs_dia←↩

/2)];

end

end

OPT_variables = [reshape(pred_state_matrix ,(n_states)*(N←↩

+1) ,1);reshape(U,n_controls*N,1)];

prob_NLP = struct('f',obj , 'x', OPT_variables , 'g', g, '←↩

p', P);

%STEP 5: define solver settings and assign it to a ←↩

object

opts = struct;

opts.ipopt.max_iter = 100; % max iteration for the ←↩

given prob

opts.ipopt.print_level = 0; %0,3

opts.print_time = 0; %0, 1

opts.ipopt.acceptable_tol = 1e-8;

opts.ipopt.acceptable_obj_change_tol = 1e-6; % ←↩

optimality convergence tolerance

S = nlpsol('solver ','ipopt ',prob_NLP , opts);

% STEP 6: define bounds on constraints and states

args = struct;

args.lbg (1: n_states) = 0;

args.ubg (1: n_states) = 0;

% next is to apply constraints for the 'N' loop (←↩

prediction loop) constraints

145

www.manaraa.com

factor = n_states;

pred_st_con_len= zeros(n_states ,N);

pred_safty_con_len = zeros(n_veh_safty_states ,N);

pred_dist_con_len = zeros(n_pred_len ,N);

for k = 1:N

pred_st_con_len (:,k) = (factor +1):(factor+n_states);

pred_safty_con_len (:,k) = ((factor+n_states)+1):(←↩

factor +(n_states+n_veh_safty_states));

pred_dist_con_len (:,k) = (factor +(n_states+←↩

n_veh_safty_states)+1):(factor +(n_states+←↩

n_veh_safty_states+n_pred_len));

factor = factor +(n_states+n_veh_safty_states+←↩

n_pred_len);

end

args.lbg(reshape(pred_st_con_len ,1,(n_states*N))) = 0;

args.ubg(reshape(pred_st_con_len ,1,(n_states*N))) = 0;

args.lbg(reshape(pred_safty_con_len ,1,(←↩

n_veh_safty_states*N))) = -inf;

args.ubg(reshape(pred_safty_con_len ,1,(←↩

n_veh_safty_states*N))) = -5;

args.lbg(reshape(pred_dist_con_len ,1,(n_pred_len*N))) = ←↩

-1;

args.ubg(reshape(pred_dist_con_len ,1,(n_pred_len*N))) = ←↩

1;

args.lbg(n_states *(N+1)+(n_veh_safty_states*N)+(←↩

n_pred_len*N)+1 : n_states *(N+1)+(n_veh_safty_states*N←↩

)+(n_pred_len*N)+no_of_obs_detect *(N+1)) = -inf;

args.ubg(n_states *(N+1)+(n_veh_safty_states*N)+(←↩

n_pred_len*N)+1 : n_states *(N+1)+(n_veh_safty_states*N←↩

)+(n_pred_len*N)+no_of_obs_detect *(N+1)) = -5.0;

args.lbw (1: n_states:n_states *(N+1) ,1) = -705;

args.ubw (1: n_states:n_states *(N+1) ,1) = 705;

args.lbw (2: n_states:n_states *(N+1) ,1) = -705;

args.ubw (2: n_states:n_states *(N+1) ,1) = 705;

146

www.manaraa.com

args.lbw (3: n_states:n_states *(N+1) ,1) = -2*pi;

args.ubw (3: n_states:n_states *(N+1) ,1) = 2*pi;

%## new addition for providing constraint for remaining ←↩

staes

args.lbw (4: n_states:n_states *(N+1) ,1) = 5.0;

args.ubw (4: n_states:n_states *(N+1) ,1) = 29;

args.lbw (5: n_states:n_states *(N+1) ,1) = -inf;

args.ubw (5: n_states:n_states *(N+1) ,1) = inf;

args.lbw (6: n_states:n_states *(N+1) ,1) = -inf;

args.ubw (6: n_states:n_states *(N+1) ,1) = inf;

args.lbw (8: n_states:n_states *(N+1) ,1) = -pi/6;

args.ubw (8: n_states:n_states *(N+1) ,1) = pi/6;

J_max = 5; J_min = - J_max;

str_rate_max =5*pi /180; str_rate_min=-str_rate_max;

% bounds on control inputs

args.lbw(n_states *(N+1) +1: n_controls:n_states *(N+1)+←↩

n_controls*N,1) = J_min;

args.ubw(n_states *(N+1) +1: n_controls:n_states *(N+1)+←↩

n_controls*N,1) = J_max;

args.lbw(n_states *(N+1) +2: n_controls:n_states *(N+1)+←↩

n_controls*N,1) = str_rate_min;

args.ubw(n_states *(N+1) +2: n_controls:n_states *(N+1)+←↩

n_controls*N,1) = str_rate_max;

args.lbw(n_states *(N+1) +3: n_controls:n_states *(N+1)+←↩

n_controls*N,1) = 0.05;

args.ubw(n_states *(N+1) +3: n_controls:n_states *(N+1)+←↩

n_controls*N,1) = 50.05;

% STEP7: Let 's start SIMULATION LOOP: provide initial ←↩

guess and define parameters

t0 = 0; % initial time

x0 = [0.0; 0.0; (pi/4); 20; 0.0; 0.0;0.0;0.0];

x_ref = [299; 299.5;(pi/4); 5];

x_tar = x_ref;

obs_type = 5;

147

www.manaraa.com

const_spd_case = 0;

if obs_type == 1

x_loc_m = [6;110]; y_loc_m = [42;100];

long_obs_len = [15;15];

hor_obs_len = [15;15];

n_indi_obs = 0; % individual obs length

[no_of_obs ,obs_pos ,obs_coord] = obs_maker_adv_plots(←↩

long_obs_len ,hor_obs_len ,n_indi_obs ,x_loc_m ,←↩

y_loc_m);

% signle bump:

bumps_coord = [250;200;10];

bumps_pos_xyz = bumps_coord;

elseif obs_type == 2

load obs_values_for_mvobs_ba5_type1_path_1

bumps_coord = [250;200;10];

bumps_pos_xyz = bumps_coord;

elseif obs_type == 3

x_loc_m = [35;60]; y_loc_m = [80;125];

long_obs_len = [15;60];

hor_obs_len = [15;25];

n_indi_obs = 0; % individual obs length

[no_of_obs ,obs_pos ,obs_coord] = obs_maker_adv_plots(←↩

long_obs_len ,hor_obs_len ,n_indi_obs ,x_loc_m ,←↩

y_loc_m);

% signle bump:

bumps_coord = [250;200;10];

bumps_pos_xyz = bumps_coord;

elseif obs_type == 4

x_loc_m = [50;140]; y_loc_m = [100;160];

long_obs_len = [15;15];

hor_obs_len = [10;10];

n_indi_obs = 0; % individual obs length

148

www.manaraa.com

[no_of_obs ,obs_pos ,obs_coord] = obs_maker_adv_plots(←↩

long_obs_len ,hor_obs_len ,n_indi_obs ,x_loc_m ,←↩

y_loc_m);

hold on

% load contour_map_path4

load contour_map_second_paper

[c1 ,h1]= contourf(x_terr_map ,y_terr_map ,z_terr_map);

clabel(c1 ,h1);

colorbar

hold on

elseif obs_type == 5

x_loc_m = [6;80;140]; y_loc_m = [42;100;160];

long_obs_len = [15;15];

hor_obs_len = [10;10];

n_indi_obs = 30; % individual obs length

[no_of_obs ,obs_pos ,obs_coord] = obs_maker_adv_plots(←↩

long_obs_len ,hor_obs_len ,n_indi_obs ,x_loc_m ,←↩

y_loc_m);

hold on

% code for creating bumps:

load contour_map_second_paper

[c1 ,h1]= contourf(x_terr_map ,y_terr_map ,z_terr_map);

clabel(c1 ,h1);

colorbar

elseif obs_type == 6

x_loc_m = [50;140]; y_loc_m = [100;160];

long_obs_len = [15;15];

hor_obs_len = [10;10];

n_indi_obs = 0; % individual obs length

[no_of_obs ,obs_pos ,obs_coord] = obs_maker_adv_plots(←↩

long_obs_len ,hor_obs_len ,n_indi_obs ,x_loc_m ,←↩

y_loc_m);

hold on

% code for creating bumps:

149

www.manaraa.com

load contour_map_second_paper

[c1 ,h1]= contourf(x_terr_map ,y_terr_map ,z_terr_map);

clabel(c1 ,h1);

colorbar

end

obs_his (:,1) = obs_pos;

detected_obs_pos = ones(n_obs_detected ,1) *1000;

detected_obs_pos_his (:,1) = detected_obs_pos;

xx(:,1) = x0;

t(1) = t0;

hdng_err_init = 0.05;

% for storing vehicle safety constraints stuff

veh_sfty_N (:,1) = [3;3;3;3]; % arbitrary values above 1 ←↩

KN

u0_int = [0.025;0.0015;0.06];

ux(:,1) = u0_int;

u0 = repmat(u0_int ,1,N) ';

% Engine/Motor Efficiency values

effi_Tar = 94; [rpm ,T_eng ,effi_curr] = LVD_model(x0(4),←↩

u0_int (1));

vehi_oper_pts (:,1) = [effi_Tar;rpm;T_eng;effi_curr]; ←↩

% save the data in eff term

pred_state_mat_init = repmat(x0 ,1,N+1) ';

hdng_err_mat_init = repmat(hdng_err_init ,1,N+1) ';

slope_rad = [0.5;0.5];

con_fn_value =con_fn(x0); % use current states and ←↩

control inputs and calculate ODE fn value

args.lbw (7: n_states:n_states *(N+1) ,1) = full(←↩

con_fn_value (2)); % lower bound on acce , (Use eqn s ←↩

for it)

args.ubw (7: n_states:n_states *(N+1) ,1) = full(←↩

con_fn_value (1));

sim_time = 100; % was 40max simulation for the ←↩

given target

150

www.manaraa.com

% start MPC from here:

mpciter = 0;

% store the prediction horizon results

xx1 = []; % for storing vehicle states along the ←↩

horizon

u_cl = []; % for storing control inputs along the ←↩

horizon

veh_sfty_N1 = []; % for storing the vehicle safety ←↩

constraints along the horizon

main_loop = tic;

obs_info = []; obs_info_out = [];

up_limit = hdng_mapping(x_tar (3) + pi/30);lp_limit = ←↩

hdng_mapping(x_tar (3) - pi/30);

while(norm((x0 (1:2) -x_ref (1:2)) ,2) > 159e-1 && mpciter <←↩

sim_time /0.1)

%STEP 7: define initial values and refernce values

args.p = [x0;x_ref;effi_Tar;effi_curr;←↩

detected_obs_pos;slope_rad;hdng_err_mat_init]; %←↩

set values of 'p' with initial and reference ←↩

values. if we need trajectory tracking , update the←↩

'w_ref ' values for each iteration

args.w_init = [reshape(pred_state_mat_init ',n_states←↩

*(N+1) ,1);reshape(u0 ',n_controls*N,1)]; % ←↩

initial value of the optimization varibales

% STEP 8: assign the values to Casadi object 'S' and←↩

prodcue the results

sol = S('x0',args.w_init , 'lbx', args.lbw , 'ubx', ←↩

args.ubw ,...

'lbg',args.lbg , 'ubg', args.ubg , 'p', args.p);

u = reshape(full(sol.x(n_states *(N+1) +1: end))',←↩

n_controls ,N) ';

xx1(:,1: n_states ,mpciter +1) = reshape(full(sol.x(1:←↩

n_states *(N+1)))',n_states ,N+1) ';

u_cl (:,1: n_controls ,mpciter +1) = u;

151

www.manaraa.com

% store the vehi safety vertical load values from ←↩

rear left and rear tires for making plots ,

veh_sfty = (-1*(reshape(full(sol.g(reshape(←↩

pred_safty_con_len ,1,(n_veh_safty_states*N))))',←↩

n_veh_safty_states ,N) ')+Fz_thr)/1000;

veh_sfty_N1 (:,1: n_veh_safty_states ,mpciter +1) = ←↩

veh_sfty;

obs_dist_constr (:,1, mpciter +1) = (-1*full(sol.g(←↩

n_states *(N+1)+(n_veh_safty_states*N)+(n_pred_len*←↩

N)+1 : n_states *(N+1)+(n_veh_safty_states*N)+(←↩

n_pred_len*N)+no_of_obs_detect *(N+1))));

% update the initial states

pred_state_matrix = reshape(full(sol.x(1: n_states *(N←↩

+1)))',n_states ,N+1);

t(mpciter +1) = t0;

[t0 , x0 , u0] = shift(dt , t0 , x0 , u, slope_rad , ←↩

model_fn);

% add effieciny_curr term here:

[rpm ,T_eng ,effi_curr] = LVD_model(x0(4),u(1,1));

con_fn_value =con_fn(x0); % use current states ←↩

and control inputs and calculate ODE fn value

% bounds on control inputs

args.lbw (7: n_states:n_states *(N+1) ,1) = full(←↩

con_fn_value (2)); % lower bound on acce , (Use ←↩

eqn s for it)

args.ubw (7: n_states:n_states *(N+1) ,1) = full(←↩

con_fn_value (1));

x0(3) = hdng_mapping(x0(3));

[tar_hdng ,x_ref (4),obs_info ,slope_deg] = ←↩

box_obs_slope_contour_search(x0 (1:3) ,x_tar (1:3) ,←↩

obs_coord ,x_terr_map ,y_terr_map ,z_terr_map);

if const_spd_case

x_ref (4) = 20; % make simulation with costant ←↩

speed of 20 m/sec

152

www.manaraa.com

end

if (length(obs_info)) > 0

obs_info_out = [obs_info_out ',obs_info];

obs_info_out_coord = reshape(obs_info_out ,2,←↩

length(obs_info_out)/2);

[UniXY ,Index]= unique(obs_info_out_coord ','rows')←↩

;

obs_info_out = reshape(UniXY ',(size(UniXY ,1) *2)←↩

,1);

k_del = [];

for i = 1: length(obs_info_out)/2

dist_m = sqrt((obs_info_out (2*i-1) - x0(1))←↩

^2 + (obs_info_out (2*i) - x0(2))^2);

if dist_m > 125 && i > 2

k_del = [k_del , (2*i-1) ,(2*i)];

end

end

obs_info_out(k_del ,:) = []; % remove the obs , ←↩

that are far from vehicle current position ,

if (length(obs_info_out)) <= n_obs_detected

detected_obs_pos (1: length(obs_info_out) ,1) =←↩

obs_info_out;

else

detected_obs_pos = obs_info_out (1:←↩

n_obs_detected ,1);

end

end

x_ref (3) = tar_hdng;

slope_rad (1) = slope_deg (1)*pi /180;

slope_rad (2) = slope_deg (2)*pi /180;

xx(:,mpciter +2) = x0; % take the history of sates ←↩

and stores it into this parameter

ux(:,mpciter +2) = u(1,:); % take the history of ←↩

control inputs and store it in this parameter

153

www.manaraa.com

veh_sfty_N (:,mpciter +2) = veh_sfty (1,:);

obs_his(:,mpciter +2) = obs_pos; % take the history ←↩

of obstacle information

detected_obs_pos_his (:,mpciter +2) = detected_obs_pos←↩

; % for plotting the obstacles detected along the ←↩

way

vehi_oper_pts (:,mpciter +2) = [effi_Tar;rpm;T_eng;←↩

effi_curr]; % for making efficiency plots

pred_state_mat_init = reshape(full(sol.x(1: n_states←↩

*(N+1)))',n_states ,N+1) '; % this is solution ←↩

trajectory , i.e, optimal states at each node

pred_state_mat_init = [pred_state_mat_init (2:end ,:);←↩

pred_state_mat_init(end ,:)];

hdng_err_mat_init = hdn_err_fn(pred_state_mat_init ,←↩

x_ref (3));

mpciter

x0(1),x0(2)

mpciter = mpciter +1;

end

main_loop_time = toc(main_loop);

ss_error = norm((x0 (1:3) -x_ref (1:3)) ,2)

average_mpc_time = main_loop_time /(mpciter +1)

B.2 Moving Obstacle avoidance code

%% step 1: define decision variables

clear all

close all

clc

format compact

% to add casadi path to the program

addpath('G:\My Drive\PhD_work\AV2_Project\N-MPC_stuff\←↩

casadi -windows -matlabR2016a -v3.4.5 ');

154

www.manaraa.com

import casadi .*

% STEP 1: define constants and design varibales

dt = 0.05;

N = 50;

% vehicle specs:

mass = 2689; % in kgs

lf = 1.58; lr = 1.72; % front ,rear axle to C.G. location

Iz = 4110; % in kg -m^2

rob_diam = 2.5;

L = lf+lr; % wheel base

delta_f_max = pi/4; delta_f_min = -delta_f_max;

%## define control inputs

jerk = SX.sym('Jk');

str_rate = SX.sym('str_rate ');

T = SX.sym('Tp'); % prediction horizon as design ←↩

variable

%## define states

Pos_x = SX.sym('s1');

Pos_y = SX.sym('s2');

theta = SX.sym('theta ');

vx = SX.sym('vx');

vy = SX.sym('vy'); % define y_dot

wz = SX.sym('wz');

ax = SX.sym('acce'); % define varibale long velo , vx in←↩

m/sec

delta_f = SX.sym('del_f '); % steering angle

% let 's add 6 more states for 3 moving obstacles and and←↩

try to include them for prediction analysis ,

obs_states =2;

n_mvobs = 3; n_mvobs_states = n_mvobs*obs_states;

mvobs1 = SX.sym('mv1');mvobs2 = SX.sym('mv2');mvobs3 = ←↩

SX.sym('mv3');mvobs4 = SX.sym('mv4');mvobs5 = SX.sym('←↩

mv5');mvobs6 = SX.sym('mv6');

155

www.manaraa.com

mvobs_states = SX.sym('mvobs ',(n_mvobs_states) ,1); % ←↩

this is in order of [mvobs_x1;mvobs_y1;mvobs_x2;←↩

mvobs_y2;mvobs_x3;mvobs_y3],

% FE_states in symbolic fashion:

FE_effi_Tar = SX.sym('Effi_Tar ');

FE_effi_req = SX.sym('Effi_req ');

states = [Pos_x;Pos_y;theta;vx;vy;wz;ax;delta_f;mvobs1;←↩

mvobs2;mvobs3;mvobs4;mvobs5;mvobs6];

n_states = length(states);

n_ref_states = 4; % x_tar ,y_tar ,theta_tar ,←↩

velo_tar (adding velo too)

controls = [jerk;str_rate;T]; % these are control←↩

inputs

n_controls = length(controls);

FE_states = [FE_effi_Tar;FE_effi_req];

n_FE_states = length(FE_states);

% define length of vehicle safety constrints ,

n_veh_safty_states = 4; % vehicle safety is applied ←↩

on one for left -rear tire and second on right -rear ←↩

tire.

no_of_obs_detect = 56; % was 76

n_obs_detected = no_of_obs_detect*obs_states;

% apply moving constraint for obstacle avoidance

n_min_dist = 1; % all vehicle prediction states should ←↩

be min 2.5 m from the nearest obstacle

n_slope = 2; % this state is to account for road ←↩

slope and thus reduce the speed of the vehicle or ←↩

avoid the slope

n_mvobs_velo =3;

n_mvobs_theta =3; % these values will be updated from ←↩

mv_obs_search fn ,

n_hdng_err = (N+1); % for making the hdng error values

U = SX.sym('U',n_controls , N); % symbolic ←↩

control inputs defined at each prediction node

156

www.manaraa.com

P = SX.sym('P',n_states+n_ref_states+n_FE_states+←↩

n_obs_detected+n_slope+n_mvobs_velo+n_mvobs_theta+←↩

n_hdng_err); % here , we would consider only Pos_x←↩

,Pos_y ,theta can be target values to be minimised

pred_state_matrix = SX.sym('X_pred ',n_states ,(N+1)); ←↩

% this is a symbolic 3x4 state matrix at each ←↩

prediction node , which is 1 unit extra in comparison ←↩

to input_matrix.

xdot = states (4)*cos(states (3)) - (states (5)+lf*states←↩

(6))*sin(states (3)); % added (V+Lf*wz) on Jan 16 ,2020

ydot = states (4)*sin(states (3)) + (states (5)+lf*states←↩

(6))*cos(states (3));

thetadot = states (6); % + states (4)/L*tan(states (8)), ←↩

added by ABD for including the effect of steering ←↩

commands on vehicle yaw ,

xdotdot = states (7); %;

slope= [P(n_states+n_ref_states+n_FE_states+←↩

n_obs_detected +1);P(n_states+n_ref_states+n_FE_states+←↩

n_obs_detected+n_slope)];

[Fyf ,Fyr] = Tire_model(states (4),states (5),states (6),←↩

states (8),states (7),slope (1));

ydotdot = (Fyf+Fyr)/mass - states (4)*states (6);

thetadotdot = (Fyf*lf - Fyr*lr)/Iz;

acce_dot = controls (1);

delta_dot = controls (2);

obs_vel = P(n_states+n_ref_states+n_FE_states+←↩

n_obs_detected+n_slope +1: n_states+n_ref_states+←↩

n_FE_states+n_obs_detected+n_slope+n_mvobs_velo);

obs_theta = P(n_states+n_ref_states+n_FE_states+←↩

n_obs_detected+n_slope+n_mvobs_velo +1: n_states+←↩

n_ref_states+n_FE_states+n_obs_detected+n_slope+←↩

n_mvobs_velo+n_mvobs_theta);

% add Euler logic for moving obsatcles

157

www.manaraa.com

mvobs_xdot1 = obs_vel (1)*cos(obs_theta (1)); % this is ←↩

simply , v_obs1*cos(obs_theta1)

mvobs_ydot1 = obs_vel (1)*sin(obs_theta (1)); % this is ←↩

simply , v_obs1*cos(obs_theta1)

mvobs_xdot2 = obs_vel (2)*cos(obs_theta (2)); % this is ←↩

simply , v_obs1*cos(obs_theta1)

mvobs_ydot2 = obs_vel (2)*sin(obs_theta (2)); % this is ←↩

simply , v_obs1*cos(obs_theta1)

mvobs_xdot3 = obs_vel (3)*cos(obs_theta (3)); % this is ←↩

simply , v_obs1*cos(obs_theta1)

mvobs_ydot3 = obs_vel (3)*sin(obs_theta (3)); % this is ←↩

simply , v_obs1*cos(obs_theta1)

% add hdng error through P-parameter

hdng_pred_matrix = P(n_states+n_ref_states+n_FE_states+←↩

n_obs_detected+n_slope+n_mvobs_velo+n_mvobs_theta +1:←↩

n_states+n_ref_states+n_FE_states+n_obs_detected+←↩

n_slope+n_mvobs_velo+n_mvobs_theta+n_hdng_err);

sys_model = [xdot;ydot;thetadot;xdotdot;ydotdot;←↩

thetadotdot;acce_dot;delta_dot;mvobs_xdot1;mvobs_ydot1←↩

;mvobs_xdot2;mvobs_ydot2;mvobs_xdot3;mvobs_ydot3];

model_fn = Function('f',{states ,controls ,slope ,obs_vel ,←↩

obs_theta},{ sys_model });

% STEP 2: formulate Objective function:

obj = 0; % initialize with objective fn

g = []; % constraint vector

% integral gains:

Q = zeros (4,4);

Q(1,1) = 0.05; Q(2,2) = 0.05; Q(3,3) = 0.0; Q(4,4)= 50;

w_hdng_err = 60; Q_delta = 0.005;

R = zeros (3,3); R(1,1) = 0.05; R(2,2) = 0.5; R(3,3) = ←↩

0.00;

w_FE = 0.0; w_phi_f = 5e-2; w_Fz = 0.005;

% terminal cost weights

w_dist = 0.5; w_phi = 15; w_obs = 0.005; w_t = 0.001;

158

www.manaraa.com

% not yet used weight terms:

w_delta = 0.1; w_str = 1; w_j = 0.01; w_cf = 1;

% vehicle safety constraints terms:

Fz_thr = 1000; % Threshold vertical load for vehicle ←↩

safety constraint , in N

Fz_off = 300; % in N

a_term = Fz_thr + 3* Fz_off;

b_term = Fz_off;

Lidar_dist_limit = 75; % was 125, 75, can varied ←↩

based on the lidar distance availability ,

% define parameter for making equal prediction length ,

n_pred_len = 1;

states_curr = pred_state_matrix (:,1);

g = [g; states_curr -P(1: n_states)];

for k = 1:N

states_curr = pred_state_matrix (:,k); control_curr =←↩

U(:,k);

ARC_term1 = sin(P(n_states +3))*(states_curr (1)-P(←↩

n_states +1)) - cos(P(n_states +3))*(states_curr (2)-←↩

P(n_states +2));

[Fzr_left ,Fzr_right ,Fzf_left , Fzf_right] = ←↩

vehi_safety_slope(states_curr (4),states_curr (5),←↩

states_curr (6) ,(control_curr (1) *0.1) ,(control_curr←↩

(2) *0.1) ,slope (1),slope (2));

Fzr_L_term = tanh(-(Fzr_left -a_term)/b_term);←↩

Fzr_R_term = tanh(-(Fzr_right -a_term)/b_term);

Fzf_L_term = tanh(-(Fzf_left -a_term)/b_term);←↩

Fzf_R_term = tanh(-(Fzf_right -a_term)/b_term);

ARC_term2 = Fzr_L_term + Fzr_R_term + Fzf_L_term + ←↩

Fzf_R_term;

Effi_term = P(n_states+n_ref_states +1)-P(n_states+←↩

n_ref_states +2);

states_term = (states_curr (1:4) -P((n_states +1):(←↩

n_states+n_ref_states)));

159

www.manaraa.com

hdng_err_rad_term = hdng_pred_matrix(k,:);

obj = obj + ARC_term1 '* w_phi_f*ARC_term1+w_Fz*←↩

ARC_term2 + hdng_err_rad_term*w_hdng_err*←↩

hdng_err_rad_term + states_term '*Q*states_term + ←↩

0.005* states_curr (8)^2 + control_curr '*R*←↩

control_curr + Effi_term '*w_FE*Effi_term;

states_next = pred_state_matrix (:,k+1); % ←↩

define each node states with a symbolic varibale ←↩

of pred_state_matrix

model_fn_value = model_fn(states_curr ,control_curr ,←↩

slope ,obs_vel ,obs_theta); % use current states←↩

and control inputs and calculate ODE fn value

states_next_euler = states_curr + (control_curr (3)*←↩

model_fn_value); % use the above ODE value←↩

, current states ,current control inputs and DT to ←↩

predcit the next time step state values. this is ←↩

called numerical integration.

g = [g; states_next -states_next_euler]; % ←↩

let 's make chnage here..we don 't need any equality←↩

constraint for mvobs , compute the constraints for←↩

each state at each nodeend

g = [g; -(Fzr_left -Fz_thr)]; % ←↩

the min load on left tire should be more than 1000←↩

N

g = [g; -(Fzr_right -Fz_thr)]; % ←↩

the min load on left tire should be more than 1000←↩

N

g = [g; -(Fzf_left -Fz_thr)]; % ←↩

the min load on left tire should be more than 1000←↩

N

g = [g; -(Fzf_right -Fz_thr)]; % ←↩

the min load on left tire should be more than 1000←↩

N

160

www.manaraa.com

% add final constraint for making the equal distance←↩

predictions with the equal distance predicitons ,

pred_dist = states_curr (4)*control_curr (3)*N;

g = [g; -(pred_dist -Lidar_dist_limit)]; % this ←↩

would decide the min distance that can be made ←↩

predictions ,

end

% Add ARC terminal cost cost function:

s_0 = sqrt((P(n_states +1)-P(1))^2+(P(n_states +2)-P(2))←↩

^2);

s_f = sqrt((P(n_states +1)-states_curr (1))^2+(P(n_states←↩

+2)-states_curr (2))^2);

phi_frg = atan2(P(n_states +2)-states_curr (2),P(n_states←↩

+1)-states_curr (1));

phi_diff = atan2(sin(states_curr (3)-phi_frg),cos(←↩

states_curr (3)-phi_frg));

obj = obj + w_dist*s_f/s_0 + w_phi*phi_diff ^2+ w_t*←↩

control_curr (3)*N;

% adding obstacle avoidance soft constraint in cost ←↩

function:

obs_dia = 5.0; % in meters

for O = 1: no_of_obs_detect % for number of obstacles , ←↩

define constraint for each obstacle

obj = obj + w_obs /(sqrt((pred_state_matrix (1,k)-P(←↩

n_states+n_ref_states+n_FE_states +(2*O-1)))^2 + (←↩

pred_state_matrix (2,k)-P(n_states+n_ref_states+←↩

n_FE_states +2*O))^2)+(rob_diam /2 + obs_dia /2));

end

% limits on prediction horizon Time:

N_max = s_0/(N*5); N_min = s_0/(N*29); % provide max , ←↩

min values for prediction horizon

c1 = -1.28e-4; c2 =8.59e-3; c3= -0.2257; c4 =3.0828; c5←↩

= -1.38e-4; c6 =6.85e-3;c7= -0.1204;c8= -3.5589;

ax_max = c1*vx^3+c2*vx^2+c3*vx+c4;

161

www.manaraa.com

ax_min = c5*vx^3+c6*vx^2+c7*vx+c8;

constraint_model = [ax_max;ax_min];

con_fn = Function('f',{states},{ constraint_model });

for k = 1:N+1

for O = 1: no_of_obs_detect % for number of ←↩

obstacles , define constraint for each obstacle

g = [g; -sqrt((pred_state_matrix (1,k)-P(n_states←↩

+n_ref_states+n_FE_states +(2*O-1)))^2 + (←↩

pred_state_matrix (2,k)-P(n_states+n_ref_states←↩

+n_FE_states +(2*O)))^2)+(rob_diam /2 + obs_dia←↩

/2)];

end

end

% let 's add moving obstacle avoidance constraint logic ,

mv_fact = 1;

for k = 1:N+1

for O = 1: n_mvobs % for number of obstacles , ←↩

define constraint for each obstacle

for h = 1:(N/mv_fact) % for each prediction ←↩

step value of moving obstacle ,

g = [g; -sqrt((pred_state_matrix (1,k)-←↩

pred_state_matrix ((6+(2*O-1)),h))^2 + (←↩

pred_state_matrix (2,k)-pred_state_matrix←↩

((6+(2*O)),h))^2)+(rob_diam /2 + obs_dia /2)←↩

];

end

end

end

OPT_variables = [reshape(pred_state_matrix ,n_states *(N←↩

+1) ,1);reshape(U,n_controls*N,1)];

prob_NLP = struct('f',obj , 'x', OPT_variables , 'g', g, '←↩

p', P);

%STEP 5: define solver settings and assign it to a ←↩

object

162

www.manaraa.com

opts = struct;

opts.ipopt.max_iter = 100; % max iteration for the ←↩

given prob

opts.ipopt.print_level = 0;

opts.print_time = 0; %0, 1

opts.ipopt.acceptable_tol = 1e-8;

opts.ipopt.acceptable_obj_change_tol = 1e-6;

S = nlpsol('solver ','ipopt ',prob_NLP , opts);

% STEP 6: define bounds on constraints and states

args = struct;

args.lbg (1: n_states) = 0; % -1e-20 % equality ←↩

constraint i.e, this is a constraint at each node for ←↩

each state varibale saying that ,

args.ubg (1: n_states) = 0; % 1e-20 % equality ←↩

constraints , similarly for the upper bound too

factor = n_states;

pred_st_con_len= zeros(n_states ,N); % size of←↩

vehi state constraints

pred_safty_con_len = zeros(n_veh_safty_states ,N); % ←↩

size of vehicle safety constraints

pred_dist_con_len = zeros(n_pred_len ,N); % for making ←↩

equal length predictions for fixed distance

for k = 1:N

pred_st_con_len (:,k) = (factor +1):(factor+n_states);←↩

% take out every six constraints and keep it ←↩

in x_len

pred_safty_con_len (:,k) = ((factor+n_states)+1):(←↩

factor +(n_states+n_veh_safty_states)); % take out ←↩

7th and 8th constraints and store it in one ←↩

parameters

pred_dist_con_len (:,k) = (factor +(n_states+←↩

n_veh_safty_states)+1):(factor +(n_states+←↩

n_veh_safty_states+n_pred_len)); % take out 7th ←↩

and 8th constraints and store it in one parameter

163

www.manaraa.com

factor = factor +(n_states+n_veh_safty_states+←↩

n_pred_len);

end

args.lbg(reshape(pred_st_con_len ,1,(n_states*N))) = 0; ←↩

% this is our final vector to be applied ←↩

constraints for states

args.ubg(reshape(pred_st_con_len ,1,(n_states*N))) = 0;

args.lbg(reshape(pred_safty_con_len ,1,(←↩

n_veh_safty_states*N))) = -inf; % this is for ←↩

safety constraints

args.ubg(reshape(pred_safty_con_len ,1,(←↩

n_veh_safty_states*N))) = -5;

args.lbg(reshape(pred_dist_con_len ,1,(n_pred_len*N))) = ←↩

-1; % this is for safety constraints

args.ubg(reshape(pred_dist_con_len ,1,(n_pred_len*N))) = ←↩

1;

args.lbg(n_states *(N+1)+(n_veh_safty_states*N)+(←↩

n_pred_len*N)+1 : n_states *(N+1)+(n_veh_safty_states*N←↩

)+(n_pred_len*N)+no_of_obs_detect *(N+1)) = -inf; %←↩

inequality constraints for obstacle avoidance

args.ubg(n_states *(N+1)+(n_veh_safty_states*N)+(←↩

n_pred_len*N)+1 : n_states *(N+1)+(n_veh_safty_states*N←↩

)+(n_pred_len*N)+no_of_obs_detect *(N+1)) = -1.0; % ←↩

upper bound should go from 0 to -inf side (boz , cal ←↩

dist is -ve , see obs constraint logic above)

% let 's add mv obs constraint as same as above

args.lbg(n_states *(N+1)+(n_veh_safty_states*N)+(←↩

n_pred_len*N)+no_of_obs_detect *(N+1) +1: n_states *(N+1)←↩

+(n_veh_safty_states*N)+(n_pred_len*N)+←↩

no_of_obs_detect *(N+1)+n_mvobs *(N+1)*(N/mv_fact)) = -←↩

inf; %inequality constraints for obstacle avoidance

164

www.manaraa.com

args.ubg(n_states *(N+1)+(n_veh_safty_states*N)+(←↩

n_pred_len*N)+no_of_obs_detect *(N+1) +1: n_states *(N+1)←↩

+(n_veh_safty_states*N)+(n_pred_len*N)+←↩

no_of_obs_detect *(N+1)+n_mvobs *(N+1)*(N/mv_fact)) = ←↩

-0.5;

% constraints on OPT_varibales:

args.lbw (1: n_states:n_states *(N+1) ,1) = -705;

args.ubw (1: n_states:n_states *(N+1) ,1) = 705;

args.lbw (2: n_states:n_states *(N+1) ,1) = -705;

args.ubw (2: n_states:n_states *(N+1) ,1) = 705;

args.lbw (3: n_states:n_states *(N+1) ,1) = -2*pi;

args.ubw (3: n_states:n_states *(N+1) ,1) = 2*pi;

%## new addition for providing constraint for remaining ←↩

staes

args.lbw (4: n_states:n_states *(N+1) ,1) = 5.0;

args.ubw (4: n_states:n_states *(N+1) ,1) = 29;

args.lbw (5: n_states:n_states *(N+1) ,1) = -inf;

args.ubw (5: n_states:n_states *(N+1) ,1) = inf;

args.lbw (6: n_states:n_states *(N+1) ,1) = -inf;

args.ubw (6: n_states:n_states *(N+1) ,1) = inf;

args.lbw (8: n_states:n_states *(N+1) ,1) = -pi/6;

args.ubw (8: n_states:n_states *(N+1) ,1) = pi/6;

% add constraints for mv obs

args.lbw (9: n_states:n_states *(N+1) ,1) = -10100;

args.ubw (9: n_states:n_states *(N+1) ,1) = 10100;

args.lbw (10: n_states:n_states *(N+1) ,1) = -10100;

args.ubw (10: n_states:n_states *(N+1) ,1) = 10100;

args.lbw (11: n_states:n_states *(N+1) ,1) = -10100;

args.ubw (11: n_states:n_states *(N+1) ,1) = 10100;

args.lbw (12: n_states:n_states *(N+1) ,1) = -10100;

args.ubw (12: n_states:n_states *(N+1) ,1) = 10100;

args.lbw (13: n_states:n_states *(N+1) ,1) = -10100;

args.ubw (13: n_states:n_states *(N+1) ,1) = 10100;

args.lbw (14: n_states:n_states *(N+1) ,1) = -10100;

165

www.manaraa.com

args.ubw (14: n_states:n_states *(N+1) ,1) = 10100;

J_max = 5; J_min = - J_max; Tp_max = 50.05; Tp_min = ←↩

0.05;

str_rate_max =5*pi /180; str_rate_min=-str_rate_max;

% bounds on control inputs

args.lbw(n_states *(N+1) +1: n_controls:n_states *(N+1)+←↩

n_controls*N,1) = J_min;

args.ubw(n_states *(N+1) +1: n_controls:n_states *(N+1)+←↩

n_controls*N,1) = J_max;

args.lbw(n_states *(N+1) +2: n_controls:n_states *(N+1)+←↩

n_controls*N,1) = str_rate_min;

args.ubw(n_states *(N+1) +2: n_controls:n_states *(N+1)+←↩

n_controls*N,1) = str_rate_max;

args.lbw(n_states *(N+1) +3: n_controls:n_states *(N+1)+←↩

n_controls*N,1) = Tp_min;

args.ubw(n_states *(N+1) +3: n_controls:n_states *(N+1)+←↩

n_controls*N,1) = Tp_max;

t0 = 0; % initial time

x0 = [0.005; 0.005; (pi/4); 20; 0.0; 0.0; 0.0; 0.0; ←↩

1000; 1000; 1000; 1000; 1000; 1000];

x_ref = [299; 299.5;(pi/4); 5];

x_tar = x_ref;

% this is only for mvobs state update fn alone: (not for←↩

st. obs)

obs_velo_update=zeros (3,1); obs_theta_update=zeros (3,1);

obs_type = 1;

% obs_type = j_k;

const_spd_case = 0; % if you would like to see const ←↩

speed case results , activate this as 1.,

if obs_type == 1

x_loc_m = [200;30;100;50;150]; y_loc_m = ←↩

[150;200;250;100;160];

long_obs_len = [1;1;1;15;15];

hor_obs_len = [1;1;1;10;10];

166

www.manaraa.com

n_indi_obs = 0;

[no_of_obs ,obs_pos ,obs_coord ,obs_velo_ms ,←↩

obs_theta_rad ,mvobs_ind] = obs_maker_adv1_plots(←↩

long_obs_len ,hor_obs_len ,n_indi_obs ,x_loc_m ,←↩

y_loc_m);

hold on

% code for creating bumps:

load contour_map_second_paper

[c1 ,h1]= contourf(x_terr_map ,y_terr_map ,z_terr_map);

clabel(c1 ,h1);

colorbar

hold off

elseif obs_type == 2

x_loc_m = [200;30;100;6;50;140]; y_loc_m = ←↩

[150;200;250;42;100;160];

long_obs_len = [1;1;1;15;15];

hor_obs_len = [1;1;1;10;10];

n_indi_obs = 30;

[no_of_obs ,obs_pos ,obs_coord ,obs_velo_ms ,←↩

obs_theta_rad ,mvobs_ind] = obs_maker_adv1_plots(←↩

long_obs_len ,hor_obs_len ,n_indi_obs ,x_loc_m ,←↩

y_loc_m);

hold on

% code for creating bumps:

load contour_map_second_paper

[c1 ,h1]= contourf(x_terr_map ,y_terr_map ,z_terr_map);

clabel(c1 ,h1);

colorbar

hold off

end

obs_his (:,1) = obs_pos;

detected_obs_pos = ones(n_obs_detected ,1) *1000;

detected_obs_pos_his (:,1) = detected_obs_pos;

xx(:,1) = x0;

167

www.manaraa.com

t(1) = t0;

hdng_err_init = 0.05; % for hdng error term

% for storing vehicle safety constraints stuff

veh_sfty_N (:,1) = [3;3;3;3]; % arbitrary values above 1 ←↩

KN

u0_int = [0.025;0.0015;0.06];

ux(:,1) = u0_int;

u0 = repmat(u0_int ,1,N) ';

% Engine/Motor Efficiency values

effi_Tar = 94; [rpm ,T_eng ,effi_curr] = LVD_model(x0(4),←↩

u0_int (1));

vehi_oper_pts (:,1) = [effi_Tar;rpm;T_eng;effi_curr];

pred_state_mat_init = repmat(x0 ,1,N+1) ';

hdng_err_mat_init = repmat(hdng_err_init ,1,N+1) ';

slope_rad = [0.5;0.5];

con_fn_value =con_fn(x0);

% bounds on control inputs

args.lbw (7: n_states:n_states *(N+1) ,1) = full(←↩

con_fn_value (2)); % lower bound on acce , (Use eqn s ←↩

for it)

args.ubw (7: n_states:n_states *(N+1) ,1) = full(←↩

con_fn_value (1));

sim_time = 100; % was 40max simulation for the ←↩

given target

% start MPC from here:

mpciter = 0;

% store the prediction horizon results

xx1 = []; % for storing vehicle states along the ←↩

horizon

u_cl = []; % for storing control inputs along the ←↩

horizon

veh_sfty_N1 = []; % for storing the vehicle safety ←↩

constraints along the horizon

main_loop = tic;

168

www.manaraa.com

obs_info = []; obs_info_out = [];

mv_obs_velo_ms = [0.0001;0.0001;0.0001]; ←↩

mv_obs_theta_rad = [0.05;0.05;0.05];

detected_mov_obs_pos_his (:,1) = ones(n_mvobs*obs_states←↩

,1) *1000;

detected_mov_obs_velo_his (:,1) = ones(n_mvobs ,1) *0.005;

detected_mov_obs_theta_his (:,1) = ones(n_mvobs ,1) *0.005;

% store the 'obs_info ' for solving stationary obstacle ←↩

storing issue ,,

obs_info_his (:,1) = zeros(n_obs_detected ,1);

up_limit = hdng_mapping(x_tar (3) + pi/30);lp_limit = ←↩

hdng_mapping(x_tar (3) - pi/30);

% dist []; norm((x0 -x_ref) ,2) > 1e-2 &&

while(norm((x0 (1:2) -x_ref (1:2)) ,2) > 159e-1 && mpciter <←↩

800)

%STEP 7: define initial values and refernce values

args.p = [x0;x_ref;effi_Tar;effi_curr;←↩

detected_obs_pos;slope_rad;mv_obs_velo_ms;←↩

mv_obs_theta_rad;hdng_err_mat_init];

args.w_init = [reshape(pred_state_mat_init ',n_states←↩

*(N+1) ,1);reshape(u0 ',n_controls*N,1)]; % ←↩

initial value of the optimization varibales

% STEP 8: assign the values to Casadi object 'S' and←↩

prodcue the results

sol = S('x0',args.w_init , 'lbx', args.lbw , 'ubx', ←↩

args.ubw ,...

'lbg',args.lbg , 'ubg', args.ubg , 'p', args.p);

u = reshape(full(sol.x(n_states *(N+1) +1: end))',←↩

n_controls ,N) ';

xx1(:,1: n_states ,mpciter +1) = reshape(full(sol.x(1:←↩

n_states *(N+1)))',n_states ,N+1) '; % take 1 to 3*(←↩

N+1) terms and convert it into [3x(N+1)] matrix

u_cl (:,1: n_controls ,mpciter +1) = u;

169

www.manaraa.com

% store the vehi safety vertical load values from ←↩

rear left and rear tires for making plots ,

veh_sfty = (-1*(reshape(full(sol.g(reshape(←↩

pred_safty_con_len ,1,(n_veh_safty_states*N))))',←↩

n_veh_safty_states ,N) ')+Fz_thr)/1000;

veh_sfty_N1 (:,1: n_veh_safty_states ,mpciter +1) = ←↩

veh_sfty;

obs_dist_constr (:,mpciter +1) = (-1*full(sol.g(←↩

n_states *(N+1)+(n_veh_safty_states*N)+(n_pred_len*←↩

N)+1 : n_states *(N+1)+(n_veh_safty_states*N)+(←↩

n_pred_len*N)+no_of_obs_detect *(N+1))));

mv_obs_dist_constr (:,mpciter +1) = (-1*full(sol.g(←↩

n_states *(N+1)+(n_veh_safty_states*N)+(n_pred_len*←↩

N)+no_of_obs_detect *(N+1)+1 : n_states *(N+1)+(←↩

n_veh_safty_states*N)+(n_pred_len*N)+←↩

no_of_obs_detect *(N+1)+n_mvobs *(N+1)*(N/mv_fact)))←↩

);

pred_state_matrix1 = reshape(full(sol.x(1: n_states *(←↩

N+1)))',n_states ,N+1);

t(mpciter +1) = t0;

[t0 , x0 , u0] = shift_mvobs(dt , t0 , x0 ,←↩

obs_velo_update ,obs_theta_update , u, slope_rad , ←↩

model_fn); % use this

[mv_obs_velo_ms ,mv_obs_theta_rad ,mv_obs_pos_xy] = ←↩

mv_obs_fn_adv(x0 ,u(1,:) ',slope_rad (1),←↩

mv_obs_velo_ms ,mv_obs_theta_rad ,model_fn ,obs_coord←↩

,obs_velo_ms ,obs_theta_rad ,dt); % was u(1,3), dt

x0((n_states -n_mvobs_states)+1: end) = mv_obs_pos_xy;←↩

% update the position (x,y) of moving obstacle ,

% update the obstacle -1 and 2 information

for i_1 = mvobs_ind

obs_coord(1,i_1) = obs_coord (1,i_1) + ←↩

obs_velo_ms(i_1)*cos(obs_theta_rad(i_1))*dt; ←↩

% was u(1,3), dt

170

www.manaraa.com

obs_coord(2,i_1) = obs_coord (2,i_1) + ←↩

obs_velo_ms(i_1)*sin(obs_theta_rad(i_1))*dt; ←↩

% was u(1,3), dt

end

obs_pos = reshape(obs_coord ,(no_of_obs*obs_states)←↩

,1);

[rpm ,T_eng ,effi_curr] = LVD_model(x0(4),u(1,1));

con_fn_value =con_fn(x0); % use current states ←↩

and control inputs and calculate ODE fn value

% bounds on control inputs

args.lbw (7: n_states:n_states *(N+1) ,1) = full(←↩

con_fn_value (2)); % lower bound on acce , (Use ←↩

eqn s for it)

args.ubw (7: n_states:n_states *(N+1) ,1) = full(←↩

con_fn_value (1));

x0(3) = hdng_mapping(x0(3));

[tar_hdng ,x_ref (4),obs_info ,slope_deg] = ←↩

box_obs_slope_contour_search(x0 (1:3) ,x_tar (1:3) ,←↩

obs_coord ,x_terr_map ,y_terr_map ,z_terr_map);

if const_spd_case

x_ref (4) = 20; % make simulation with costant ←↩

speed of 20 m/sec

end

if ~isempty(obs_info) % (length(obs_info)) > 0

obs_info_out = [obs_info_out ',obs_info];

obs_info_out_coord = reshape(obs_info_out ,2,←↩

length(obs_info_out)/2);

[UniXY ,Index]= unique(obs_info_out_coord ','rows')←↩

;

obs_info_out = reshape(UniXY ',(size(UniXY ,1) *2)←↩

,1);

% delete the stored obs_data , that is more than ←↩

125 m from the curr vehi position ,

for i = length(obs_info_out)/2: -1:1

171

www.manaraa.com

dist_m = sqrt((obs_info_out (2*i-1) - x0(1))←↩

^2 + (obs_info_out (2*i) - x0(2))^2);

if dist_m > 125

obs_info_out ((2*i-1) :2*i) = [];

end

end

if ~isempty(obs_info_out)

for i = length(obs_info_out)/2: -1:1

% let 's remove the obstacle from storage←↩

, if it is moving condition for ←↩

moving is ,

for j = length(mv_obs_pos_xy)/2: -1:1

dist_m1 = sqrt((obs_info_out (2*i-1) ←↩

- mv_obs_pos_xy (2*j-1))^2 + (←↩

obs_info_out (2*i) - mv_obs_pos_xy←↩

(2*j))^2);

if dist_m1 < 0.9

obs_info_out ((2*i-1) :2*i) = [];

end

end

end

end

if (length(obs_info_out)) <= n_obs_detected

detected_obs_pos (1: length(obs_info_out) ,1) =←↩

obs_info_out;

else

detected_obs_pos = obs_info_out (1:←↩

n_obs_detected ,1);

end

end

x_ref (3) = tar_hdng;

slope_rad (1) = slope_deg (1)*pi /180;

slope_rad (2) = slope_deg (2)*pi /180;

172

www.manaraa.com

xx(:,mpciter +2) = x0; % take the history of sates ←↩

and stores it into this parameter

ux(:,mpciter +2) = u(1,:); % take the history of ←↩

control inputs and store it in this parameter

veh_sfty_N (:,mpciter +2) = veh_sfty (1,:);

obs_his(:,mpciter +2) = obs_pos; % take the history ←↩

of obstacle information

detected_obs_pos_his (:,mpciter +2) = detected_obs_pos←↩

; % for plotting the obstacles detected along the ←↩

way

detected_mov_obs_pos_his (:,mpciter +2) = ←↩

mv_obs_pos_xy;

detected_mov_obs_velo_his (:,mpciter +2) = ←↩

mv_obs_velo_ms;

detected_mov_obs_theta_his (:,mpciter +2) = ←↩

mv_obs_theta_rad;

vehi_oper_pts (:,mpciter +2) = [effi_Tar;rpm;T_eng;←↩

effi_curr]; % for making efficiency plots

pred_state_mat_init = reshape(full(sol.x(1: n_states←↩

*(N+1)))',n_states ,N+1) ';

pred_state_mat_init = [pred_state_mat_init (2:end ,:);←↩

pred_state_mat_init(end ,:)];

hdng_err_mat_init = hdn_err_fn(pred_state_mat_init ,←↩

x_ref (3));

mpciter

mpciter = mpciter +1;

end

main_loop_time = toc(main_loop);

ss_error = norm((x0 (1:3) -x_ref (1:3)) ,2)

average_mpc_time = main_loop_time /(mpciter +1)

B.3 ABD-JDN algorithm flow chart

173

www.manaraa.com

Figure B.1: Flow chart for the ABD-JDN algorithm.

174

www.manaraa.com

Appendix C

Path tracking algorithms

C.1 Example of Analog read on Beagle bone black

The below code and schematic provide basic example on how to operate Beagle bone
balck embedde system using python script. The Fig .C.1 shows the connections
between potentiometer and Beagle bone black analog pins. The sensor mimics the
steering measurement and the fixed gear ratio provide the steering wheel angle of
1/5th truck. Application: For steering sensor/pot sensor reading

C.2 Steering sensor measurement code

% Analog Read code for steering sensor measurement

import Adafruit_BBIO.ADC as ADC % we need this library ←↩

to use ADC pins

from time import sleep % we need this for having delay ←↩

during measruments

ADC.setup () % this line activates all the ADC pins on ←↩

BBBw

analogPin = "P9_33" % assign 33 pin to analogPin ←↩

variable

175

www.manaraa.com

Figure C.1: Potentiometer interface with Beagle bone black

while (1):

currVal = ADC.read(analogPin) % usedADC.read cmd to ←↩

read sensor value

print "The current Value is: ", currVal

sleep (0.2)

C.3 Stanley method

This method was developed by DARPA team for tracking the path using simple
steering angle relation [59]. The steering commands for navigating the vehicle can
be calculated based on the cross track error calculated from vehicle kinematics model
with respect to the desired path is shown in Figures C.2 and C.3. The control gain

176

www.manaraa.com

Figure C.2: Vehicle bi-cycle model along the desired path coordinates

Figure C.3: Schematic of Stanley control law

used in the present test conditions is 0.15. The initial simulations were made with
the above conditions and results shows the good agreement with test data.

177

www.manaraa.com

Table C.1

Sensor properties used in LQG controller development.

Sensor Application specifications Range resolution maker chipset
GPS Base
station

Position mea-
surement

GNSS, 72
channel,
Tracking:=-
164 dBm,5hz
update

2.5 km ±0.35m Inertial
sense

EVB-2

Gyro rate measure-
ments

1− 255hz up-
date

±2000
deg/s

±0.06
deg/s/-
rms

Chrobo
tics

UM7

Accelero
meter

acceleration
measurement

1− 255hz up-
date

±8g 400μ
g/rthz

Chrobo
tics

UM7

Magneto
meter

heading mea-
surement

1− 255hz up-
date

±1200
μT

±4% Chrobo
tics

UM7

C.4 Sensor properties

Table. C.1. Provides the various sensor properties used in the LQG controller devel-
opment.

178

	Sensor Fusion and Non-linear MPC controller development studies for Intelligent Autonomous vehicular systems
	Recommended Citation

	PhD_Thesis_Work_ABD_final_submission.pdf

